Contextual RNN-GANs for Abstract Reasoning Diagram Generation

Contextual RNN-GANs for Abstract Reasoning Diagram Generation

ID:40711996

大小:464.84 KB

页数:7页

时间:2019-08-06

Contextual RNN-GANs for Abstract Reasoning Diagram Generation _第1页
Contextual RNN-GANs for Abstract Reasoning Diagram Generation _第2页
Contextual RNN-GANs for Abstract Reasoning Diagram Generation _第3页
Contextual RNN-GANs for Abstract Reasoning Diagram Generation _第4页
Contextual RNN-GANs for Abstract Reasoning Diagram Generation _第5页
资源描述:

《Contextual RNN-GANs for Abstract Reasoning Diagram Generation 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ContextualRNN-GANsforAbstractReasoningDiagramGenerationArnabGhosh1,VivekaKulharia1,AmitabhaMukerjee1,VinayNamboodiri1,MohitBansal21IITKanpur2UNCChapelHillfarnabghosh93,vivekakulhariag@gmail.com,famit,vinaypng@iitk.ac.in,mbansal@cs.unc.eduAbstractUnderstan

2、ding,predicting,andgeneratingobjectmotionsandtransformationsisacoreprobleminartificialintelli-gence.Modelingsequencesofevolvingimagesmaypro-videbetterrepresentationsandmodelsofmotionandmayultimatelybeusedforforecasting,simulation,orvideogen-Figure1:Exampleab

3、stractreasoningproblem,whereourmodeleration.DiagrammaticAbstractReasoningisanavenueinwasabletogenerateanimageveryclosetothecorrectanswer.whichdiagramsevolveincomplexpatternsandoneneedstoinfertheunderlyingpatternsequenceandgeneratethenextFig.1showsanexamplep

4、roblemfromourDAT-DARimageinthesequence.Forthis,wedevelopanovelCon-datasetandhighlightstheintricaciesofthereasoningin-textualGenerativeAdversarialNetworkbasedonRecurrentNeuralNetworks(Context-RNN-GANs),whereboththegen-volvedininferringthecorrectanswer(i.e.,t

5、henextimageeratorandthediscriminatormodulesarebasedoncontex-inthesequence).Differentpatterncomponentsonboththetualhistory(modeledasRNNs)andtheadversarialdiscrim-sidesandboththecornersarechangingindifferentandmul-inatorguidesthegeneratortoproducerealisticima

6、gesfortipleways,makingitaninterestingchallengetocorrectlytheparticulartimestepintheimagesequence.Weevaluategeneratethenextimageinthesequence.1Accurategenera-theContext-RNN-GANmodel(anditsvariants)onanoveltionmodelsdevelopedforsuchareasoningtaskcanbeuseddata

7、setofDiagrammaticAbstractReasoning,whereitper-forgeneralAIapplicationssuchasforecastingandsimula-formscompetitivelywith10th-gradehumanperformancebuttiongeneration.Thesemodelswillalsobeusefulforgen-thereisstillscopeforinterestingimprovementsascomparederation

8、ofreal-worldimagesandvideos,arecentresearchtocollege-gradehumanperformance.Wealsoevaluateourdirectionincomputervisionanddeeplearning(Goodfel-modelonastandardvideonext-framepredictiontask,achiev-ingimpr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。