Automatic Classification of Power Quality

Automatic Classification of Power Quality

ID:40707765

大小:1.56 MB

页数:10页

时间:2019-08-06

Automatic Classification of Power Quality_第1页
Automatic Classification of Power Quality_第2页
Automatic Classification of Power Quality_第3页
Automatic Classification of Power Quality_第4页
Automatic Classification of Power Quality_第5页
资源描述:

《Automatic Classification of Power Quality》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.61,NO.1,JANUARY2014521AutomaticClassificationofPowerQualityEventsUsingBalancedNeuralTreeB.Biswal,Member,IEEE,M.Biswal,Member,IEEE,S.Mishra,SeniorMember,IEEE,andR.JalajaAbstractThispaperproposesanempirical-modedecomposi-time.TheFouriertransf

2、ormgivesinformationregardingthetion(EMD)andHilberttransform(HT)-basedmethodforthefrequencycomponentspresentbutdoesnotcontaininformationclassificationofpowerquality(PQ)events.Nonstationarypoweronwhentheyexistandforhowlong.AlthoughtheFouriersignaldisturbancewaveformsareconsideredasthes

3、uperimposi-transformisoneofthefasttechniques,itsefficiencyislimitedtionofvariousundulatingmodes,andEMDisusedtoseparateouttheseintrinsicmodesknownasintrinsicmodefunctions(IMFs).tostationarysignalsonly.MostPQeventsarenonstationaryandTheHTisappliedonalltheIMFstoextractinstantaneousam-he

4、ncerequiretechniquethatwouldnotonlyprovidefrequencyplitudeandfrequencycomponents.Thistimefrequencyanalysisinformationbutalsocapturethetimingofoccurrenceoftheresultsintheclearvisualdetection,localization,andclassificationdisturbance.Theshort-timeFouriertransformgivesagoodofthedifferen

5、tpowersignaldisturbances.Therequiredfeaturecharacterizationofthesignal.Itprovidesfrequencyaswellasvectorsareextractedfromthetimefrequencydistributiontoperformtheclassification.Abalancedneuraltreeisconstructedtotimeinformation.Thenonstationarynatureofthesignaliswellclassifythepowersig

6、nalpatterns.Finally,theproposedmethodisdefined.However,duetotheconstantwindowlength,somecomparedwithanS-transform-basedclassifiertoshowtheefficacycharacteristicsofthesignalarenotdetectedwell.ThetimeoftheproposedtechniqueinclassifyingthePQdisturbances.andfrequencyresolutionislimitedbyth

7、eHeisenberg–GaborIndexTermsBalancedneuraltree(NT)(BNT),empirical-inequality.Differenttypesofdisturbanceswouldrequirewin-modedecomposition(EMD),Hilberttransform(HT),dowsofdifferentlengths.Choosingthebestwindowlengthinstantaneousfrequency(IF),intrinsicmodefunction(IMF),couldbeaproblem

8、.Thewavelettransfor

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。