欢迎来到天天文库
浏览记录
ID:40702498
大小:1.29 MB
页数:158页
时间:2019-08-06
《[PhD Thesis 2013] Advances in Deep Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、(DRAFT)AdvancesinDeepLearningKyunghyunChoJuly17,2013AbstractDeepneuralnetworkshavebecomeincreasinglymorepopularunderthenameofdeeplearningrecentlyduetotheirsuccessinchallengingmachinelearningtasks.Althoughthepopularityismainlyduetotherecentsuccesses,thehi
2、storyofneuralnetworksgoesasfarbackas1958whenRosenblattpresentedaperceptronlearningalgorithm.Sincethen,variouskindsofartificialneuralnetworkshavebeenpro-posed.TheyincludeHopfieldnetwork,self-organizingmaps,neuralprincipalcom-ponentanalysis,Boltzmannmachines
3、,multi-layerperceptrons,radial-basisfunctionnetworks,autoencoders,sigmoidbeliefnetwork,supportvectormachinesanddeepbeliefnetworks.Inthefirstpartofthisthesis,theauthoraimsatinvestigatingthesemodelsandfindingacommonsetofbasicprinciplesfordeepneuralnetworks.T
4、hethesisstartsfromsomeoftheearlierideasandmodelsinthefieldofartificialneuralnetworksandarriveatautoencodersandBoltzmannmachineswhicharetwomostwidelystudiedneuralnetworksthesedays.Theauthorthoroughlydiscusseshowthosevariousneu-ralnetworksarerelatedtoeachoth
5、erandhowtheprinciplesbehindthosenetworksformfoundationforautoencodersandBoltzmannmachines.Thesecondpartisthecollectionofthetenrecentpublicationsbytheauthor.ThesepublicationsmainlyfocusonlearningandinferencealgorithmsofBoltzmannma-chinesandautoencoders.Es
6、pecially,Boltzmannmachineswhichareknowntobedifficulttotrainhavebeeninthemainfocus.Throughoutseveralpublicationstheau-thorandtheco-authorshavedevisedandproposedanewsetoflearningalgorithmswhichincludestheenhancedgradient,adaptivelearningrateandparalleltempe
7、ring.ThesealgorithmsarefurtherappliedtoarestrictedBoltzmannmachinewithGaus-sianvisibleunits.InadditiontothesealgorithmsforrestrictedBoltzmannmachinestheauthorpro-posedatwo-stagepretrainingalgorithmthatinitializestheparametersofadeepBoltzmannmachinetomatc
8、hthevariationalposteriordistributionofasimilarlystructureddeepautoencoder.Finally,deepneuralnetworksareappliedtoimagedenoisingandspeechrecognition.34PrefaceThisworkhasbeencarriedoutintheDepartmentofInformationandComputerSc
此文档下载收益归作者所有