Reducing Degeneracy in Maximum Entropy Models of Networks

Reducing Degeneracy in Maximum Entropy Models of Networks

ID:40698259

大小:1.60 MB

页数:5页

时间:2019-08-06

Reducing Degeneracy in Maximum Entropy Models of Networks_第1页
Reducing Degeneracy in Maximum Entropy Models of Networks_第2页
Reducing Degeneracy in Maximum Entropy Models of Networks_第3页
Reducing Degeneracy in Maximum Entropy Models of Networks_第4页
Reducing Degeneracy in Maximum Entropy Models of Networks_第5页
资源描述:

《Reducing Degeneracy in Maximum Entropy Models of Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ReducingDegeneracyinMaximumEntropyModelsofNetworksSzabolcsHorvát,1ÉvaCzabarka,2andZoltánToroczkai11DepartmentofPhysics,UniversityofNotreDame,NotreDame,IN,46556USA2DepartmentofMathematics,UniversityofSouthCarolina,Columbia,SC,29208USABasedonJaynes’smaximumentropyprinciple,exponenti

2、alrandomgraphsprovideafamilyofprincipledmodelsthatallowthepredictionofnetworkpropertiesasconstrainedbyempiricaldata.However,theiruseisoftenhinderedbythedegeneracyproblemcharacterizedbyspontaneoussymmetry-breaking,wherepredictionssimplyfail.Hereweshowthatdegeneracyappearswhenthecor

3、respondingdensityofstatesfunctionisnotlog-concave.Weproposeasolutiontothedegeneracyproblemforalargeclassofmodelsbyexploitingthenonlinearrelationshipsbetweentheconstrainedmeasurestoconvexifythedomainofthedensityofstates.Wedemonstratetheeffectivenessofthemethodonexamples,includingonZ

4、achary’skarateclubnetworkdata.PACSnumbers:89.75.Hc,89.70.Cf,05.20.-y,87.23.GeOurunderstandingandmodelingofcomplexsystemspresentouranalysisandresultsusingthelanguageofisalwaysbasedonpartialinformation,limiteddataandnetworksandERGmodels,however,ourfindingsareknowledge.Theonlyprincipl

5、edmethodofpredictinggenerallyapplicable.LetusconsiderthesetGNofallpropertiesofacomplexsystemsubjecttowhatisknownlabeledsimplegraphs(noparalleledges,orself-loops)on(dataandknowledge)isbasedontheMaximumEntropyNnodes,representingthemicrostates7!G,andanPrincipleofJaynes[1,2].Usingthi

6、sprinciple,here-arbitrarysetofgraphmeasures,orobservablesm(G)=derivedtheformalismofstatisticalmechanics,bothclas-m1(G);:::;mK(G),e.g.,thenumberofedgesmj,2-starssical[1]andthetime-dependentquantumdensity-matrixm_,trianglesmM,thedegreeofthe9thnode.Theseformalism[2],usingShannon’sinf

7、ormationentropy[3].measuresrepresenttheconstraintsandweassumethatThemethodgeneratesaprobabilitydistributionP()wearegivenspecificvaluesm0,forthem(inputdata).overallthepossible(micro)statesofthesystembyTheymaycomefromanempiricalnetworkG0,orcouldPmaximizingtheentropyS[P]=P()lnP()

8、sub-representaveragesfromseverale

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。