Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion

Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion

ID:40600121

大小:5.42 MB

页数:120页

时间:2019-08-04

Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion_第1页
Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion_第2页
Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion_第3页
Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion_第4页
Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion_第5页
资源描述:

《Chapter 3 Basic Structural Dynamics for Impact,Shock and Explosion》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、3BasicStructuralDynamicsforImpact,ShockandExplosion3.1GeneralIntroductionMostloadsactingonstructuresaredynamicinorigin.Theseloadscanbesuddenlyappliedorallowedtoreachfullmagnitudeafteraconsiderabledelay.Ontheotherhand,thestructureswillhavevariousdegreesoffreedomwithunclampedorclampedfreeor

2、forcedvibrations.Theseneedtobediscussedpriortotheintroductionofimpactandexplosionanalysisanddesign.3.2Single-Degree-of-FreedomSystemIfasystemisconstrainedsuchthatitcanvibrateinonlyonemodewithasin-gleco-ordinatesystem(geometriclocationofthemasseswithinthesystem),thenitisasingle-degree-of-f

3、reedomsystem.3.2.1UnclampedFreeVibrationsAmassmissuspendedbyaspringwithastiffnessk(forcenecessarytocauseunitchangeoflength).LetthemassmbedisplacedverticallyasshowninFig.3.1.Then,withgivenrestraints,F−kδST=0,(3.1)whereForW=mg,g=accelerationduetogravityandδST=staticdeflection.Themassisrelease

4、danddisplacedfromtheequilibriumposition.Thecoordinatexthendefinesthepositionofthemassmatanytimeandistakentobepositivewhenmovinginadownwarddirection.Figure3.2showsthenewpositions.4003BasicStructuralDynamicsforImpact,ShockandExplosionkkkδSTunstrainedmpositionδSTequilibriummmpositionfreebodyd

5、iagramForW=mgFig.3.1.Themassanditsequilibriumpositionequilibriumkpositionk(δST+x)kx¨xdynamicpositionmmmdynamicfreebodycompletefreebodyForW=mgFig.3.2.ThemassdisplacedfromtheequilibriumpositionMethod1:UsingNewton’sSecondLawofMotionThislawstatesthatthemagnitudeoftheaccelerationofamassispropo

6、rtionaltotheresultantforceactinguponitandhasthesamedirectionandsenseasthisforce.Thefollowingequationsareobtained:3.2Single-Degree-of-FreedomSystem401d2xm=−k(δST+x)+F,(3.2)dt2mx¨=−kxormx¨+kx=0.(3.3)Method2:EnergyMethodForaconservativesystem,thetotalenergyofthesystem(potentialenergy(PE)plus

7、kineticenergy(KE))isunchangedatalltimes.ThusdKE+PE=constant;or(KE+PE)=0,(3.4)dt12KE=mx˙,(3.5)20012PE=[F−k(δST+x)]dx=−kxdx=kx.(3.6)xx2Using(3.5)d22(mx˙+kx/2)=0.(3.7)dtHence(mx¨+kx)˙x=0ormx¨+kx=0.(3.8)Sincetheenergybalanceholdsallthetime,includingthebeginningstage,i

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。