Approximation in Learning Theory

Approximation in Learning Theory

ID:40563195

大小:393.92 KB

页数:42页

时间:2019-08-04

Approximation in Learning Theory_第1页
Approximation in Learning Theory_第2页
Approximation in Learning Theory_第3页
Approximation in Learning Theory_第4页
Approximation in Learning Theory_第5页
资源描述:

《Approximation in Learning Theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Constr.Approx.(2008)27:33–74DOI:10.1007/s00365-006-0655-2CONSTRUCTIVEAPPROXIMATION©2007SpringerScience+BusinessMedia,Inc.ApproximationinLearningTheoryV.N.TemlyakovAbstract.ThispaperaddressessomeproblemsofsupervisedlearninginthesettingformulatedbyCuckerandSma

2、le.Supervisedlearning,orlearning-from-examples,referstoaprocessthatbuildsonthebaseofavailabledataofinputsxiandoutputsyi,i=1,...,m,afunctionthatbestrepresentstherelationbetweentheinputsx∈Xandthecorrespondingoutputsy∈Y.Thegoalistofindanestimatorfzonthebaseofgiv

3、endataz:=((x1,y1),...,(xm,ym))thatapproximateswelltheregressionfunctionfρ(oritsprojection)ofanunknownBorelprobabilitymeasureρdefinedonZ=X×Y.Weassumethat(xi,yi),i=1,...,m,areindependentanddistributedaccordingtoρ.Wediscussthefollowingtwoproblems:I.theprojection

4、learningproblem(improperfunctionlearningproblem);II.universal(adaptive)estimatorsintheproperfunctionlearningproblem.InthefirstproblemwedonotimposeanyrestrictionsonaBorelmeasureρexceptourstandardassumptionthat

5、y

6、≤Ma.e.withrespecttoρ.Inthiscaseweusethedataztoes

7、timate(approximate)theL2(ρX)projection(fρ)WoffρontoafunctionclassWofourchoice.Here,ρXisthemarginalprobabilitymeasure.In[KT1,2]thisproblemhasbeenstudiedforWsatisfyingthedecayconditionεn(W,B)≤Dn−roftheentropynumbersεn(W,B)ofWinaBanachspaceBinthecaseB=C(X)orB=L

8、2(ρX).Inthispaperweobtaintheupperestimatesinthecaseεn(W,L1(ρX))≤Dn−rwithanextraassumptionthatWisconvex.Inthesecondproblemweassumethatanunknownmeasureρsatisfiessomecon-ditions.Followingthestandardwayfromnonparametricstatisticsweformulatetheseconditionsofthefor

9、mfρ∈.Next,weassumethattheonlyaprioriinformationavail-ableisthatfρbelongstoaclass(unknown)fromaknowncollection{}ofclasses.Wewanttobuildanestimatorthatprovidesapproximationoffρclosetotheoptimalfortheclass.Alongwithstandardpenalizedleastsquaresestimatorswec

10、onsideranewmethodofconstructionofuniversalestimators.Thismethodisbasedonacombinationoftwopowerfulideasinbuildinguniversalestimators.Thefirstoneistheuseofpenal-izedleastsquaresestimators.Thisideaw

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。