资源描述:
《A new mixed formulation for elasticity 1988 Arnold Falk NM》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、NumerischeNumer.Math.53,13-30(1988)Mathematik9Springer-Verlag1988ANewMixedFormulationforElasticityDouglasN.Arnold2,.andRichardS.Falk2,it.tDepartmentofMathematics,UniversityofMaryland,CollegePark,MD20742,USA2DepartmentofMathematics,RutgersUniversity,NewBrunswick,NJ08903,USADedicatedtoProfesso
2、rIvoBabugkaontheoccasionofhissixtiethbirthdaySummary.Weproposeanewmixedvariationalformulationfortheequationsoflinearelasticity.Itdoesnotrequiresymmetrictensorsandconsequentlyiseasytodiscretizebyadaptingmixedfiniteelementsdevelopedforscalarsecondorderellipticequations.SubjectClassifications:AM
3、S(MOS):65N30;73C35;73K25;CR:G1.8.1.IntroductionInthispaperwepresentanewmixedvariationalformulationfortheproblemoflinearelastostatics.OurformulationisverysimilartotheclassicalHellinger-Reissnerformulation,butappearssuperiorforfiniteelementdiscretization.TomakeplaintherelationbetweentheHellinge
4、r-Reissnerformulationandthepresentone,weconsiderfirstanelasticbodyoccupyingaregiong?inEuclideann-space(n=2or3)subjecttogivenbodyforcesfandwhosedisplacementgonF-0Risknown.TheHellinger-Reissnerprincipleseeksasaddle-pointofthequadraticfunctionalJ(~,v)=~[89~g-~n.(1.1)g?0~Thevariables~andvrangeov
5、erspacesofsuitablysmoothfunctionsonQwithvaluesin~,+,thespaceofsymmetricnxntensors,and~=IR",respective-ly.ThefourthordertensorAisthecompliancetensor,whichcharacterizestheelasticproperitiesofthematerial.FurthernotationsareexplainedinSect.2.Underreasonableassumptionsthereisauniquesaddle-point(if
6、,u)of(l.1)and,moreover,~isthestressfieldanduthedisplacementfield.TheEuler-Lagrangeequationsassociatedwith(1.1)formanellipticsystemoforder2n.Thepresentformulationalsoseeksasaddle-pointofaquadraticfunctionaloftheform(1.1).Thefunctionaldiffersonlyinthatthecompliancetensoris*SupportedbyNSFGrantDM
7、S-8313247**SupportedbyNSFGrantDMS-840261614D.N.ArnoldandR.S.Falkreplacedbyadifferentfourthordertensor,whichdependsonAinasimplefashion.AmoreessentialdifferenceisthatinourformulationthevariablerangesoverallsuitablysmoothfunctionswithvaluesinIR(