6. Inequality constrained optimization and the Kuhn-Tucker formulation

6. Inequality constrained optimization and the Kuhn-Tucker formulation

ID:40556105

大小:88.52 KB

页数:7页

时间:2019-08-04

6. Inequality constrained optimization and the Kuhn-Tucker formulation _第1页
6. Inequality constrained optimization and the Kuhn-Tucker formulation _第2页
6. Inequality constrained optimization and the Kuhn-Tucker formulation _第3页
6. Inequality constrained optimization and the Kuhn-Tucker formulation _第4页
6. Inequality constrained optimization and the Kuhn-Tucker formulation _第5页
资源描述:

《6. Inequality constrained optimization and the Kuhn-Tucker formulation 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、InequalityconstrainedoptimizationandtheKuhn-TuckerformulationInstructor:MinWang1.Nonnegativityconstraints.ConsidertheoptimizationproblemmaxF(x)w:r:t:xs:t:x10;x20;:::;xn0whereF:Rn!Risdi¤erentiable.Supposexisalocalsolution,thenthereexists">0suchthatF(x)F(x+hx)forallx2Rn,kxk=1,andforallhsuc

2、hthatx+hx2B(x)Rn:+"RecalltheTaylorexpansion@F1@2FF(x+hx)=F(x)+h(x)x+h2x0(x+hx)x;@x2@x2forsome2(0;1).Then@F1@2Fh(x)x+h2x0(x+hx)x0@x2@x2forallx2Rn,kxk=1,andforallhsuchthatx+hx2B(x)Rn:+"Takex=(00:::10:::)wheretheithitemequalstozero.Assumex>0thenx+hx2iB(x)Rnforsu¢c

3、ientlysmallhofeithersign.+"–Takeh>0,dividethefundamentalinequalitybyhandtakethelimitash!0+,wehave@F(x)0:@xiTakeh<0,dividethefundamentalinequalitybyhandtakethelimitash!0,wehave@F(x)0:@xiHenceifx>0,@F(x)=0andifx=0,@F(x)0.i@xii@xiSummarizingtheaboveresults,wehavethefollowing…rst-ordernecess

4、aryconditions:x0iand@F(x)0@xifori=1;2;:::;n.–Ifforsomej,x>0,then@F(x)=0.j@xj–Ifforsomej,@F(x)<0,thenx=0.@xjjComplementaryslacknesscondition@F@Fxi0;(x)0;xi(x)=0@xi@xifori=1;2;:::;n.12.InequalityconstraintsonlyConsidertheproblemmaxF(x1;x2)w:r:t:x1;x2s:t:g(x1;x2)bwhereF:R2!Randg:R2!Ra

5、redi¤erentiable.Suppose(x;x)isalocalsolutionandtheconstraintquali…cationholds,i.e.ifg(x)=b,@g(x)6=12@x0.Thenthelocalsolutionhastwocases.Case1:g(x)=b.–Tangencybetweenfx:g(x)=bgandfx:F(x)=F(x)g:–@g(x)isperpendiculartofx:g(x)=bgandpointsinthedirectionoffx:g(x)>bg,and@x@F(x)isperpendiculartof

6、x:F(x)=F(x)gandpointsinthedirectionoffx:F(x)F(x)g.@x–@g(x)and@F(x)arecolinear.Hencethereexistssuchthat@x@x@F@g(x)(x)=0:(1)@x@x–LagrangianfunctionL(x1;x2;)=F(x)+[bg(x1;x2)]:Noticethat(1)isthesameasthereexistssuchthat@L@L(x;)=(x;)=0:@x1@x2and@L(x;)=0;>0:@Case2:g(x)

7、isalocalsolutiontotheunconstrainedmaxproblem,i.e.,@F(x)=0;whichisthesameas@x@L@L(x;)=(x;)=0;if=0@x1@x2and@L(x;)>0:@Theseresultsleadtothefollowing…rstordernecessaryconditions@L(x;)=0;@x1@L

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。