资源描述:
《微分中值定理--赵树嫄》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章 微分中值定理和导数应用中值定理应用研究函数性质及曲线性态利用导数解决实际问题罗尔中值定理拉格朗日中值定理柯西中值定理泰勒公式(第三节)推广第一节 微分中值定理一、罗尔定理二、拉格朗日中值定理三、柯西中值定理第三章问题的提出我们知道,导数是刻划函数在一点处变化率的数学模型,它反映的是函数在一点处的局部变化性态,但在理论研究和实际应用中,常常需要把握函数在某区间上的整体变化性态,那么函数的整体变化性态与局部变化性态有何关系呢?中值定理正是对这一问题的理论诠释。中值定理揭示了函数在某区间上的整体性质
2、与该区间内部某一点的导数之间的关系。中值定理既是利用微分学知识解决应用问题的数学模型,又是解决微分学自身发展的一种理论性数学模型。费马引理一、罗尔定理且存在证:设则证毕几何解释:导数等于零的点称为函数的驻点(或稳定点、临界点)罗尔定理满足:(1)在闭区间[a,b]上连续(2)在开区间(a,b)内可导(3)f(a)=f(b)使证:故在[a,b]上取得最大值M和最小值m.若M=m,则因此在(a,b)内至少存在一点若M>m,则M和m中至少有一个与端点值不等,不妨设则至少存在一点使注意:1)定理条件条件不全具
3、备,结论不一定成立.例如,则由费马引理得使2)定理条件只是充分的.本定理可推广为在(a,b)内可导,且在(a,b)内至少存在一点证明提示:设证F(x)在[a,b]上满足罗尔定理.例1.证明方程有且仅有一个小于1的正实根.证:1)存在性.则在[0,1]连续,且由零点定理知存在使即方程有小于1的正根2)唯一性.假设另有为端点的区间满足罗尔定理条件,至少存在一点但矛盾,故假设不真!设二、拉格朗日中值定理(1)在闭区间[a,b]上连续满足:(2)在开区间(a,b)内可导至少存在一点使思路:利用逆向思维找出一个
4、满足罗尔定理条件的函数作辅助函数显然,在[a,b]上连续,在(a,b)内可导,且证:问题转化为证由罗尔定理知至少存在一点即定理结论成立.证毕几何解释:在曲线弧AB上至少有一点ξ,在该点处的切线平行于弦AB拉格朗日中值定理的有限增量形式:推论:若函数在区间I上满足则在I上必为常数.证:在I上任取两点格朗日中值公式,得由的任意性知,在I上为常数.令则例2.证明等式证:设由推论可知(常数)令x=0,得又故所证等式在定义域上成立.自证:经验:欲证时只需证在I上例3.证明不等式证:设中值定理条件,即因为故因此应
5、有三、柯西中值定理分析:及(1)在闭区间[a,b]上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)内至少存在一点使满足:要证证:作辅助函数且使即由罗尔定理知,至少存在一点思考:柯西定理的下述证法对吗?两个不一定相同错!上面两式相比即得结论.柯西定理的几何意义:注意:弦的斜率切线斜率例4.设至少存在一点使证:结论可变形为设则在[0,1]上满足柯西中值定理条件,因此在(0,1)内至少存在一点,使即证明例5.试证至少存在一点使证:法1用柯西中值定理.则f(x),F(x)在[1,e]上满足柯西
6、中值定理条件,令因此即分析:例5.试证至少存在一点使法2令则f(x)在[1,e]上满足罗尔中值定理条件,使因此存在内容小结1.微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理2.微分中值定理的应用(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论关键:利用逆向思维设辅助函数费马引理思考与练习1.填空题1)函数在区间[1,2]上满足拉格朗日定理条件,则中值2)设有个根,它们分别在区间上.方程2.设且在内可导,证明至少存在一点使提示:由结论可知,只需证即验证在上满足罗尔定理条件
7、.设3.若可导,试证在其两个零点间一定有的零点.提示:设欲证:使只要证亦即作辅助函数验证在上满足罗尔定理条件.4.思考:在即当时问是否可由此得出不能!因为是依赖于x的一个特殊的函数.因此由上式得表示x从右侧以任意方式趋于0.应用拉格朗日中值定理得上对函数作业P1327,8,10,12,14,15提示:题15.题14.考虑费马(1601–1665)法国数学家,他是一位律师,数学只是他的业余爱好.他兴趣广泛,博览群书并善于思考,在数学上有许多重大贡献.他特别爱好数论,他提出的费马大定理:至今尚未得到普遍的
8、证明.他还是微积分学的先驱,费马引理是后人从他研究最大值与最小值的方法中提炼出来的.拉格朗日(1736–1813)法国数学家.他在方程论,解析函数论,及数论方面都作出了重要的贡献,近百余年来,数学中的许多成就都直接或间接地溯源于他的工作,他是对分析数学产生全面影响的数学家之一.柯西(1789–1857)法国数学家,他对数学的贡献主要集中在微积分学,《柯西全集》共有27卷.其中最重要的的是为巴黎综合学校编写的《分析教程》,《无穷小分析概论》,《微积分在几何