Scalar curvature and projective embeddings, II

Scalar curvature and projective embeddings, II

ID:40401981

大小:136.79 KB

页数:14页

时间:2019-08-01

Scalar curvature and projective embeddings, II_第1页
Scalar curvature and projective embeddings, II_第2页
Scalar curvature and projective embeddings, II_第3页
Scalar curvature and projective embeddings, II_第4页
Scalar curvature and projective embeddings, II_第5页
资源描述:

《Scalar curvature and projective embeddings, II》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Scalarcurvatureandprojectiveembeddings,IIS.K.DonaldsonFebruary1,20081IntroductionThisisasequeltothepreviouspaper[6],whichstudiedconnectionsbetweenthedifferentialgeometryofcomplexprojectivevarietiesandcertainspecific“balanced”embeddingsinprojectivespace.Th

2、eoriginalplanwasthatthissequelwouldbealengthypaper,discussingvariousextensionsandramifi-cationsoftheideassudiedin[6].Howeverthisplanhasbeenmodifiedinthelightofsubsequentdevelopments.Ontheonehand,Mabuchi[11],[12],[13]hasextendedtheresultsof[6]tothecasewher

3、ethevarietieshavein-finitesimalautomorphims.Ontheotherhand,PhongandSturm[14],[15]havesharpenedsomeoftheargumentsin[6].TheyalsoexplaintherelationoftheideastotheDelignepairingandtheChownorm,andtoearlierworkofZhang[18],whichtheauthorwasunfortunatelynotaware

4、ofwhenwrit-ing[6].Thesedevelopmentsmeanthatsomeoftheresultsplannedforthesequelarenowredundant,whileontheotherhandtheexpositionofallthedifferentpointsofviewhasgrownintoadauntingtask.Thus,instead,thissequelisashortpaperdevotedtotheproofofoneresultwhichisqu

5、iteaneasyconsequenceofthemaintheoremin[6].Tostateourresult,supposethatXisacompactKahlermanifoldandfixaKahlerclass[ω0]onX.RecallthattheMabuchifunctional[9]isafunctionalM,defineduptoanarbitraryadditiveconstant,ontheKahlerarXiv:math/0407534v2[math.DG]14Jan20

6、05metricsinthiscohomologyclasswhichischaracterisedbytheformulaZnωδM=(S−Sˆ)δφ(1)Xn!HeremetricsωintheclassarerepresentedbyKahlerpotentialsω=ω0+i∂∂φandδφisaninfinitesimalvariationinφ.ThesymbolSdenotesthescalarcurvatureofthemetricωandSˆistheaveragevalueofSwi

7、threspecttotheωnvolumeform,whichisatopologicalinvariantoftheKahlerclass.Whatn!1equation(1)reallydefinesisa1-formonthespaceofmetricsintheKahlerclassandoneshowsthatthisisclosed,soisthederivativeofafunctionM,uniqueuptoaconstant.NowsupposethatLisapositivelin

8、ebundleoverXandtheKahlerclassis2πc1(L).Asin[6],wewriteAut(X,L)forthegroupofautomorphimsof∗thepair(X,L)modulothetrivialautomorphismsC(actingbyconstantscalarmultiplicationonthefibres).Theorem1SupposethatAut(X,L)isdiscreteandthatther

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。