资源描述:
《Scalar curvature and projective embeddings, II》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Scalarcurvatureandprojectiveembeddings,IIS.K.DonaldsonFebruary1,20081IntroductionThisisasequeltothepreviouspaper[6],whichstudiedconnectionsbetweenthedifferentialgeometryofcomplexprojectivevarietiesandcertainspecific“balanced”embeddingsinprojectivespace.Th
2、eoriginalplanwasthatthissequelwouldbealengthypaper,discussingvariousextensionsandramifi-cationsoftheideassudiedin[6].Howeverthisplanhasbeenmodifiedinthelightofsubsequentdevelopments.Ontheonehand,Mabuchi[11],[12],[13]hasextendedtheresultsof[6]tothecasewher
3、ethevarietieshavein-finitesimalautomorphims.Ontheotherhand,PhongandSturm[14],[15]havesharpenedsomeoftheargumentsin[6].TheyalsoexplaintherelationoftheideastotheDelignepairingandtheChownorm,andtoearlierworkofZhang[18],whichtheauthorwasunfortunatelynotaware
4、ofwhenwrit-ing[6].Thesedevelopmentsmeanthatsomeoftheresultsplannedforthesequelarenowredundant,whileontheotherhandtheexpositionofallthedifferentpointsofviewhasgrownintoadauntingtask.Thus,instead,thissequelisashortpaperdevotedtotheproofofoneresultwhichisqu
5、iteaneasyconsequenceofthemaintheoremin[6].Tostateourresult,supposethatXisacompactKahlermanifoldandfixaKahlerclass[ω0]onX.RecallthattheMabuchifunctional[9]isafunctionalM,defineduptoanarbitraryadditiveconstant,ontheKahlerarXiv:math/0407534v2[math.DG]14Jan20
6、05metricsinthiscohomologyclasswhichischaracterisedbytheformulaZnωδM=(S−Sˆ)δφ(1)Xn!HeremetricsωintheclassarerepresentedbyKahlerpotentialsω=ω0+i∂∂φandδφisaninfinitesimalvariationinφ.ThesymbolSdenotesthescalarcurvatureofthemetricωandSˆistheaveragevalueofSwi
7、threspecttotheωnvolumeform,whichisatopologicalinvariantoftheKahlerclass.Whatn!1equation(1)reallydefinesisa1-formonthespaceofmetricsintheKahlerclassandoneshowsthatthisisclosed,soisthederivativeofafunctionM,uniqueuptoaconstant.NowsupposethatLisapositivelin
8、ebundleoverXandtheKahlerclassis2πc1(L).Asin[6],wewriteAut(X,L)forthegroupofautomorphimsof∗thepair(X,L)modulothetrivialautomorphismsC(actingbyconstantscalarmultiplicationonthefibres).Theorem1SupposethatAut(X,L)isdiscreteandthatther