on the volume functional of compact manifolds with boundary with constant scalar curvature

on the volume functional of compact manifolds with boundary with constant scalar curvature

ID:34662193

大小:367.51 KB

页数:38页

时间:2019-03-08

on the volume functional of compact manifolds with boundary with constant scalar curvature_第1页
on the volume functional of compact manifolds with boundary with constant scalar curvature_第2页
on the volume functional of compact manifolds with boundary with constant scalar curvature_第3页
on the volume functional of compact manifolds with boundary with constant scalar curvature_第4页
on the volume functional of compact manifolds with boundary with constant scalar curvature_第5页
资源描述:

《on the volume functional of compact manifolds with boundary with constant scalar curvature》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ONTHEVOLUMEFUNCTIONALOFCOMPACTMANIFOLDSWITHBOUNDARYWITHCONSTANTSCALARCURVATUREPENGZIMIAOANDLUEN-FAITAM1Abstract.Westudythevolumefunctionalonthespaceofcon-stantscalarcurvaturemetricswithaprescribedboundarymetric.Wederiveasufficientandnecessaryconditionforametr

2、ictobeacriticalpoint,andshowthattheonlydomainsinspaceforms,onwhichthestandardmetricsarecriticalpoints,aregeodesicballs.Inthezeroscalarcurvaturecase,assumingtheboundarycanbeiso-metricallyembeddedintheEuclideanspaceasacompactstrictlyconvexhypersurface,weshowt

3、hatthevolumeofacriticalpointisalwaysnolessthantheEuclideanvolumeboundedbytheisomet-ricembeddingoftheboundary,andthetwovolumesareequalifandonlyifthecriticalpointisisometrictoastandardEuclideanball.Wealsoderiveasecondvariationformulaandapplyittoshowthat,onEuc

4、lideanballsand“small”hyperbolicandspheri-calballsindimensions3≤n≤5,thestandardspaceformmetricsareindeedsaddlepointsforthevolumefunctional.1.IntroductionGivenacompactn-dimensionalmanifoldΩwithaboundaryΣ,westudyvariationalpropertiesofthevolumefunctionalonthes

5、paceofconstantscalarcurvaturemetricsonΩwithaprescribedboundarymetriconΣ.Thedimensionnisassumedtobe≥3.Thereareseveralmotivationsforustoconsiderthisproblem.arXiv:0807.2693v1[math.DG]17Jul2008Thefirstmotivationcomesfromarecentresultin[9].Thereoneconsidersanasym

6、ptoticallyflat3-manifold(M,g)withagivenend.Let{xi}beacoordinatesystemat∞whichdefinestheasymptoticstructureof(M,g).LetSr={x∈M

7、

8、x

9、=r}bethecoordinatesphere,where

10、x

11、denotesthecoordinatelength.LetγbetheinducedmetriconSr.Whenrislarge,(Sr,γ)canbeisometricallyembedde

12、dintheEuclideanspaceR3asastrictlyconvexhypersurfaceS0.LetV(r)r0Date:June2008.2000MathematicsSubjectClassification.Primary53C20;Secondary58JXX.1ResearchpartiallysupportedbyEarmarkedGrantofHongKong#CUHK403005.12PengziMiaoandLuen-FaiTambethevolumeoftheregionenc

13、losedbyS0inR3andVbethevolumerroftheregionenclosedbySin(M3,g).Itwasprovedin[9]that,asrr→∞,22(1)V(r)−V0(r)=2mADMπr+o(r)whenevermisdefined.HeremistheADMmassof(M3,g)ADMADM[2].ThereforeifR(g),thescalarcurvat

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。