资源描述:
《on the volume functional of compact manifolds with boundary with constant scalar curvature》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ONTHEVOLUMEFUNCTIONALOFCOMPACTMANIFOLDSWITHBOUNDARYWITHCONSTANTSCALARCURVATUREPENGZIMIAOANDLUEN-FAITAM1Abstract.Westudythevolumefunctionalonthespaceofcon-stantscalarcurvaturemetricswithaprescribedboundarymetric.Wederiveasufficientandnecessaryconditionforametr
2、ictobeacriticalpoint,andshowthattheonlydomainsinspaceforms,onwhichthestandardmetricsarecriticalpoints,aregeodesicballs.Inthezeroscalarcurvaturecase,assumingtheboundarycanbeiso-metricallyembeddedintheEuclideanspaceasacompactstrictlyconvexhypersurface,weshowt
3、hatthevolumeofacriticalpointisalwaysnolessthantheEuclideanvolumeboundedbytheisomet-ricembeddingoftheboundary,andthetwovolumesareequalifandonlyifthecriticalpointisisometrictoastandardEuclideanball.Wealsoderiveasecondvariationformulaandapplyittoshowthat,onEuc
4、lideanballsand“small”hyperbolicandspheri-calballsindimensions3≤n≤5,thestandardspaceformmetricsareindeedsaddlepointsforthevolumefunctional.1.IntroductionGivenacompactn-dimensionalmanifoldΩwithaboundaryΣ,westudyvariationalpropertiesofthevolumefunctionalonthes
5、paceofconstantscalarcurvaturemetricsonΩwithaprescribedboundarymetriconΣ.Thedimensionnisassumedtobe≥3.Thereareseveralmotivationsforustoconsiderthisproblem.arXiv:0807.2693v1[math.DG]17Jul2008Thefirstmotivationcomesfromarecentresultin[9].Thereoneconsidersanasym
6、ptoticallyflat3-manifold(M,g)withagivenend.Let{xi}beacoordinatesystemat∞whichdefinestheasymptoticstructureof(M,g).LetSr={x∈M
7、
8、x
9、=r}bethecoordinatesphere,where
10、x
11、denotesthecoordinatelength.LetγbetheinducedmetriconSr.Whenrislarge,(Sr,γ)canbeisometricallyembedde
12、dintheEuclideanspaceR3asastrictlyconvexhypersurfaceS0.LetV(r)r0Date:June2008.2000MathematicsSubjectClassification.Primary53C20;Secondary58JXX.1ResearchpartiallysupportedbyEarmarkedGrantofHongKong#CUHK403005.12PengziMiaoandLuen-FaiTambethevolumeoftheregionenc
13、losedbyS0inR3andVbethevolumerroftheregionenclosedbySin(M3,g).Itwasprovedin[9]that,asrr→∞,22(1)V(r)−V0(r)=2mADMπr+o(r)whenevermisdefined.HeremistheADMmassof(M3,g)ADMADM[2].ThereforeifR(g),thescalarcurvat