ON PATH INTEGRATION ON

ON PATH INTEGRATION ON

ID:40391255

大小:271.10 KB

页数:8页

时间:2019-08-01

ON PATH INTEGRATION ON_第1页
ON PATH INTEGRATION ON_第2页
ON PATH INTEGRATION ON_第3页
ON PATH INTEGRATION ON_第4页
ON PATH INTEGRATION ON_第5页
资源描述:

《ON PATH INTEGRATION ON》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、QUANTUMGROUPSANDQUANTUMSPACESBANACHCENTERPUBLICATIONS,VOLUME40INSTITUTEOFMATHEMATICSPOLISHACADEMYOFSCIENCESWARSZAWA1997ONPATHINTEGRATIONONNONCOMMUTATIVEGEOMETRIESACHIMKEMPFDepartmentofAppliedMathematics&TheoreticalPhysicsandCorpusChristiCollegeintheUniversit

2、yofCambridgeSilverStreet,CambridgeCB39EW,U.K.E-mail:a.kempf@amtp.cam.ac.ukAbstract.WediscussarecentapproachtoquantumfieldtheoreticalpathintegrationonnoncommutativegeometrieswhichimplyUV/IRregularisingfiniteminimaluncertaintiesinpositionsand/ormomenta.Oneclasso

3、fsuchnoncommutativegeometriesariseas‘momentumspaces’overcurvedspaces,forwhichwecannowgivethefullsetofcommutationrelationsincoordinatefreeform,basedontheSyngeworldfunction.1.Introduction.Acrucialexampleofnoncommutativegeometry[1]isthequan-tummechanicalphasesp

4、acewithitsnoncommuting`coordinatefunctions'xiandpj.Weinvestigatethepossibilitythatalsothepositionandmomentumspacesacquirenoncom-mutativegeometricfeatures,i.e.weconsiderassociativeHeisenbergalgebrasAgeneratedbyelementsxi;pj,nowallowing[xi;xj]6=0;[pi;pj]6=0(1)

5、andalso:[xi;pj]=ih(ij+ijklxkxl+ijklpkpl+:::)(2)Werestrictourselvestorelationsthatallowtheinvolutionx=x;p=p,i.e.forwhichiiii`'extendstoanantialgebrahomomorphism.TomotivatetheparticularformofrelationEq.2,letthisrelationberepresentedonadensedomainDHinaHil

6、bertspaceH,i.e.boththexiandthepjaretoberepresentedassymmetricoperatorsonD.Assuming,2e.g.inthesimplestcaseofonedimension, ; >0and <1=h,togetherwiththeusualde nitionofuncertainties(x)2:=hj(xhjxji)2ji(3)ji1991MathematicsSubjectClassification:Primary81S05;Sec

7、ondary83C47.Thepaperisinfinalformandnoversionofitwillbepublishedelsewhere.[379]380A.KEMPFyieldshxp1+(x)2+hxi2+(p)2+hpi2(4)2AsisnotdiculttocheckEq.4impliesthatthereare niteminimaluncertaintiesx0=(1= h2)1=2andp=(1= h2)1=2,sothatthereappearsa`mi

8、nimaluncertainty0gap'(alljinormalised):8ji2D:xjix0andpjip0(5)Physically,sinceandcanbeassumedsmall,wehaveordinaryquantummechanicalbehaviouronmediumscales.Thepresenceofa nitex0,physicallyre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。