资源描述:
《ON PATH INTEGRATION ON》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、QUANTUMGROUPSANDQUANTUMSPACESBANACHCENTERPUBLICATIONS,VOLUME40INSTITUTEOFMATHEMATICSPOLISHACADEMYOFSCIENCESWARSZAWA1997ONPATHINTEGRATIONONNONCOMMUTATIVEGEOMETRIESACHIMKEMPFDepartmentofAppliedMathematics&TheoreticalPhysicsandCorpusChristiCollegeintheUniversit
2、yofCambridgeSilverStreet,CambridgeCB39EW,U.K.E-mail:a.kempf@amtp.cam.ac.ukAbstract.WediscussarecentapproachtoquantumfieldtheoreticalpathintegrationonnoncommutativegeometrieswhichimplyUV/IRregularisingfiniteminimaluncertaintiesinpositionsand/ormomenta.Oneclasso
3、fsuchnoncommutativegeometriesariseas‘momentumspaces’overcurvedspaces,forwhichwecannowgivethefullsetofcommutationrelationsincoordinatefreeform,basedontheSyngeworldfunction.1.Introduction.Acrucialexampleofnoncommutativegeometry[1]isthequan-tummechanicalphasesp
4、acewithitsnoncommuting`coordinatefunctions'xiandpj.Weinvestigatethepossibilitythatalsothepositionandmomentumspacesacquirenoncom-mutativegeometricfeatures,i.e.weconsiderassociativeHeisenbergalgebrasAgeneratedbyelementsxi;pj,nowallowing[xi;xj]6=0;[pi;pj]6=0(1)
5、andalso:[xi;pj]=ih(ij+ijklxkxl+ijklpkpl+:::)(2)Werestrictourselvestorelationsthatallowtheinvolutionx=x;p=p,i.e.forwhichiiii`'extendstoanantialgebrahomomorphism.TomotivatetheparticularformofrelationEq.2,letthisrelationberepresentedonadensedomainDHinaHil
6、bertspaceH,i.e.boththexiandthepjaretoberepresentedassymmetricoperatorsonD.Assuming,2e.g.inthesimplestcaseofonedimension,;>0and<1=h,togetherwiththeusualdenitionofuncertainties(x)2:=hj(x hjxji)2ji(3)ji1991MathematicsSubjectClassification:Primary81S05;Sec
7、ondary83C47.Thepaperisinfinalformandnoversionofitwillbepublishedelsewhere.[379]380A.KEMPFyieldsh xp1+(x)2+hxi2+(p)2+hpi2(4)2AsisnotdiculttocheckEq.4impliesthatthereareniteminimaluncertaintiesx0=(1=h2 ) 1=2andp=(1=h2 ) 1=2,sothatthereappearsa`mi
8、nimaluncertainty0gap'(alljinormalised):8ji2D:xjix0andpjip0(5)Physically,sinceandcanbeassumedsmall,wehaveordinaryquantummechanicalbehaviouronmediumscales.Thepresenceofanitex0,physicallyre