Knowledge Representation for Stochastic Decision Processes

Knowledge Representation for Stochastic Decision Processes

ID:40390033

大小:2.56 MB

页数:42页

时间:2019-08-01

Knowledge Representation for Stochastic Decision Processes_第1页
Knowledge Representation for Stochastic Decision Processes_第2页
Knowledge Representation for Stochastic Decision Processes_第3页
Knowledge Representation for Stochastic Decision Processes_第4页
Knowledge Representation for Stochastic Decision Processes_第5页
资源描述:

《Knowledge Representation for Stochastic Decision Processes》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、KnowledgeRepresentationforStochasticDecisionProcessesCraigBoutilierUept.ofConiputerScience,UniversityofBritishColumbia,Vancouver,BCV6T124,CAKADAcebly@cs.ubc.cuAbstract.Reasoningaboutstochasticdynamicalsystemsandplanningunderuncertaintyhascometoplayafundamentalrolei

2、nA1researchandapplications.Therepresentationofsuchsystems,inparticular,ofactionswithstochasticeffects,hasaccordinglybeengivenincreasingat-tentioninrecentyears.Inthisarticle,wesurveyanumberoftechniquesforrepresentingstochasticprocessesandactionswithstochasticeffects

3、usingdyriilrriicBayesiannetworksandinfluencediagrams,andbrieflydescribehowt,hesesupporteffectiveinferencefortaskssuchasmoni-toring,forecasting,explanationanddecisionmaking.Wealsocomparethesetechniquestoseveralact,ionrepresentationsadoptedintheclassicalreasoningabou

4、tactionandplanningcommunities,describinghowtra-dit,ionalproblemssuchastheframeandramificationproblemsaredealtwithiristochasticsettings,andhowthesesolutionscomparetorecentapproachestothisproblemintheclassical(deterministic)literature.Wearguethatwhilestochasticdynami

5、csintroducecertaincomplicationswhenitcomestosuchissues,forthemostpart,intuitionsunderlyingclassicalmodelscanbeextendedtothestochasticsetting.1IntroductionWithinartificialintelligence,increasingattcntionhasbeenpaidt.otheproblemsofthemonitoring,forecastingandcontrolo

6、fcomplexstochasticprocesses.WhileclassicalplanninghashistoricallybeentheprimefocusofthoseinA1interestedincontrollingdynamicalsystems,researchershavecometorea.lizethatmany(ormost)realisticproblemscannotbeadequatelymodeledusingtheassumptionsofclassicalplanning.Specif

7、ically,oneisgenerallyforcedtoconsideractionswithnondet,erministicorstochasticeffects,processesinwhichexogenouseventsoccur,incompleteoruncertainknowledgeofthesystemstate,impreciseobservationsofthesystemstate,problemswithill-definedgoalsormultiple,possiblyconflict-in

8、gobjectives,andon-going(possiblynonterrninating)processeswithindefinitehorizon.St,ochasticanddecisiontheoret,icplanning[17,19,51attemptstoincorpo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。