Adversarially Learned Inference

Adversarially Learned Inference

ID:40384651

大小:4.15 MB

页数:18页

时间:2019-08-01

Adversarially Learned Inference_第1页
Adversarially Learned Inference_第2页
Adversarially Learned Inference_第3页
Adversarially Learned Inference_第4页
Adversarially Learned Inference_第5页
资源描述:

《Adversarially Learned Inference》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PublishedasaconferencepaperatICLR2017ADVERSARIALLYLEARNEDINFERENCEVincentDumoulin1,IshmaelBelghazi1,BenPoole2OlivierMastropietro1,AlexLamb1,MartinArjovsky3AaronCourville1y1MILA,UniversitédeMontréal,firstname.lastname@umontreal.ca.2NeuralDynamicsandCompu

2、tationLab,Stanford,poole@cs.stanford.edu.3NewYorkUniversity,martinarjovsky@gmail.com.yCIFARFellow.ABSTRACTWeintroducetheadversariallylearnedinference(ALI)model,whichjointlylearnsagenerationnetworkandaninferencenetworkusinganadversarialprocess.Thegenerat

3、ionnetworkmapssamplesfromstochasticlatentvariablestothedataspacewhiletheinferencenetworkmapstrainingexamplesindataspacetothespaceoflatentvariables.Anadversarialgameiscastbetweenthesetwonetworksandadiscriminativenetworkistrainedtodistinguishbetweenjointl

4、atent/data-spacesamplesfromthegenerativenetworkandjointsamplesfromtheinferencenetwork.Weillustratetheabilityofthemodeltolearnmutuallycoherentinferenceandgen-erationnetworksthroughtheinspectionsofmodelsamplesandreconstructionsandconfirmtheusefulnessofthel

5、earnedrepresentationsbyobtainingaperformancecompetitivewithstate-of-the-artonthesemi-supervisedSVHNandCIFAR10tasks.1INTRODUCTIONDeepdirectedgenerativemodelhasemergedasapowerfulframeworkformodelingcomplexhigh-dimensionaldatasets.Thesemodelspermitfastance

6、stralsampling,butareoftenchallengingtolearnduetothecomplexitiesofinference.Recently,threeclassesofalgorithmshaveemergedaseffectiveforlearningdeepdirectedgenerativemodels:1)techniquesbasedontheVariationalAutoencoder(VAE)thataimtoimprovethequalityandeffici

7、encyofinferencebylearninganinferencemachine(Kingma&Welling,2013;Rezendeetal.,2014),2)techniquesbasedonGenerativeAdversarialNetworks(GANs)thatbypassinferencealtogether(Goodfellowetal.,2014)and3)autoregressiveapproaches(vandenOordetal.,2016b;c;a)thatforeg

8、olatentrepresentationsandinsteadmodeltherelationshipbetweeninputvariablesdirectly.Whilealltechniquesareprovablyconsistentgiveninfinitecapacityanddata,inpracticetheylearnverydifferentkindsofgenerativemodelsontypicaldatasets.arXiv:1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。