End-to-end Learning of Multi-sensor 3D Tracking by Detection

End-to-end Learning of Multi-sensor 3D Tracking by Detection

ID:40384361

大小:1.73 MB

页数:8页

时间:2019-08-01

End-to-end Learning of Multi-sensor 3D Tracking by Detection_第1页
End-to-end Learning of Multi-sensor 3D Tracking by Detection_第2页
End-to-end Learning of Multi-sensor 3D Tracking by Detection_第3页
End-to-end Learning of Multi-sensor 3D Tracking by Detection_第4页
End-to-end Learning of Multi-sensor 3D Tracking by Detection_第5页
资源描述:

《End-to-end Learning of Multi-sensor 3D Tracking by Detection》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2018IEEEInternationalConferenceonRoboticsandAutomation(ICRA)May21-25,2018,Brisbane,AustraliaEnd-to-endLearningofMulti-sensor3DTrackingbyDetectionDaviFrossard1andRaquelUrtasun1Abstract—Inthispaperweproposeanovelapproachtoboththedetectionandtrackingproblems.Wereferthereadertrackingbydetectionthatca

2、nexploitbothcamerasaswellastoFigure1foranoverviewourapproach.LIDARdatatoproduceveryaccurate3Dtrajectories.Towardsthisgoal,weformulatetheproblemasalinearprogramthatII.RELATEDWORKcanbesolvedexactly,andlearnconvolutionalnetworksfordetectionaswellasmatchinginanend-to-endmanner.WeRecentworksinmultiple

3、objecttrackingareusuallydoneevaluateourmodelinthechallengingKITTIdatasetandshowintwofronts:Filteringbasedandbatchbasedmethods.verycompetitiveresults.FilteringbasedmethodsrelyontheMarkovassumptiontoestimatetheposteriordistributionofthetrajectories.I.INTRODUCTIONBayesianorMonteCarlofilteringmethodss

4、uchasGaussianProcesses[3],ParticleFiltersandKalmanFilters[2]areOneofthefundamentaltasksinperceptionsystemsforcommonlyemployed.Oneadvantageoffilteringapproachesautonomousdrivingistobeabletotracktrafficparticipants.istheirefficiency,whichallowsforreal-timeapplications.Thistask,commonlyreferredtoasMult

5、i-targettracking,However,theysufferfromthepropagationofearlyerrors,consistsonidentifyinghowmanyobjectsthereareineachwhicharehardtomitigate.Totacklethisshortcoming,batchframe,aswellaslinktheirtrajectoriesovertime.Despitemethodsutilizeobjecthypothesesfromadetector(trackingmanydecadesofresearch,trac

6、kingisstillanopenproblem.bydetection)overentiresequencestoestimatetrajectories,Challengesincludedealingwithobjecttruncation,highspeedwhichallowsforglobaloptimizationandusageofhighertargets,lightingconditions,sensormotionandcomplexlevelcues.Estimatingtrajectoriesbecomesadataassociationinteractions

7、betweentargets,whichleadstoocclusionandproblem,i.e.,decidingfromthesetofdetectionswhichshouldpathcrossing.belinkedtoformcorrecttrajectories.TheassociationcanbeMostmoderncomputervisionapproachestomulti-targetestimatedwi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。