资源描述:
《End-to-end Learning of Multi-sensor 3D Tracking by Detection》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2018IEEEInternationalConferenceonRoboticsandAutomation(ICRA)May21-25,2018,Brisbane,AustraliaEnd-to-endLearningofMulti-sensor3DTrackingbyDetectionDaviFrossard1andRaquelUrtasun1Abstract—Inthispaperweproposeanovelapproachtoboththedetectionandtrackingproblems.Wereferthereadertrackingbydetectionthatca
2、nexploitbothcamerasaswellastoFigure1foranoverviewourapproach.LIDARdatatoproduceveryaccurate3Dtrajectories.Towardsthisgoal,weformulatetheproblemasalinearprogramthatII.RELATEDWORKcanbesolvedexactly,andlearnconvolutionalnetworksfordetectionaswellasmatchinginanend-to-endmanner.WeRecentworksinmultiple
3、objecttrackingareusuallydoneevaluateourmodelinthechallengingKITTIdatasetandshowintwofronts:Filteringbasedandbatchbasedmethods.verycompetitiveresults.FilteringbasedmethodsrelyontheMarkovassumptiontoestimatetheposteriordistributionofthetrajectories.I.INTRODUCTIONBayesianorMonteCarlofilteringmethodss
4、uchasGaussianProcesses[3],ParticleFiltersandKalmanFilters[2]areOneofthefundamentaltasksinperceptionsystemsforcommonlyemployed.Oneadvantageoffilteringapproachesautonomousdrivingistobeabletotracktrafficparticipants.istheirefficiency,whichallowsforreal-timeapplications.Thistask,commonlyreferredtoasMult
5、i-targettracking,However,theysufferfromthepropagationofearlyerrors,consistsonidentifyinghowmanyobjectsthereareineachwhicharehardtomitigate.Totacklethisshortcoming,batchframe,aswellaslinktheirtrajectoriesovertime.Despitemethodsutilizeobjecthypothesesfromadetector(trackingmanydecadesofresearch,trac
6、kingisstillanopenproblem.bydetection)overentiresequencestoestimatetrajectories,Challengesincludedealingwithobjecttruncation,highspeedwhichallowsforglobaloptimizationandusageofhighertargets,lightingconditions,sensormotionandcomplexlevelcues.Estimatingtrajectoriesbecomesadataassociationinteractions
7、betweentargets,whichleadstoocclusionandproblem,i.e.,decidingfromthesetofdetectionswhichshouldpathcrossing.belinkedtoformcorrecttrajectories.TheassociationcanbeMostmoderncomputervisionapproachestomulti-targetestimatedwi