Hartshorne Algebraic Geometry Solutions

Hartshorne Algebraic Geometry Solutions

ID:40383292

大小:972.52 KB

页数:121页

时间:2019-08-01

Hartshorne Algebraic Geometry Solutions_第1页
Hartshorne Algebraic Geometry Solutions_第2页
Hartshorne Algebraic Geometry Solutions_第3页
Hartshorne Algebraic Geometry Solutions_第4页
Hartshorne Algebraic Geometry Solutions_第5页
资源描述:

《Hartshorne Algebraic Geometry Solutions》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AlgebraicGeometryBy:RobinHartshorneSolutionsSolutionsbyJoeCutroneandNickMarshburn1Foreword:Thisisourattempttoputacollectionofpartiallycompletedsolutionsscatteredontheweballinoneplace.ThisstartedasourpersonalcollectionofsolutionswhilereadingHartshorne.Wewerestuck(andarestill)onseveralprobl

2、ems,whichledtoourwebsearchwherewefoundsomeextremelycleversolutionsby[SAM]and[BLOG]amongothers.Somesolutionsinthis.pdfarealltheirsandjustrepeatedhereforconvenience.Inotherplacestheauthorsmadecorrectionsorclari cations.Duecredithastriedtobeproperlygivenineachcase.Ifyoulookontheirwebsites(li

3、stedinthereferences)andcomparesolutions,itshouldbeobviouswhenweusedtheirideasifnotexplicitlystated.Whilemostsolutionsaredone,theyarenottypedatthistime.Iamtryingtobeonpacewithonesolutionaday(...whichrarelyhappens),soIwillupdatethisfrequently.Checkbackfromtimetotimeforupdates.AsIamusingthis

4、reallyasalearningtoolformyself,pleaserespondwithcommentsorcorrections.Aswithanymathpostedanywhere,readatyourownrisk!21Chapter1:Varieties1.1AneVarieties1.(a)LetYbetheplanecurvede nedbyy=x2.ItscoordinateringA(Y)isthenk[x;y]=(yx2)=k[x;x2]=k[x].(b)A(Z)=k[x;y]=(xy1)=k[x;1],whichistheloca

5、lizationofk[x]atxx.Anyhomomorphismofk-algebras':k[x;1]!k[x]mustmapxxintok,sincexisinvertible.Then'isclearlynotsurjective,soinparticular,notanisomorphism.(c)Letf(x;y)2k[x;y]beanirreduciblequadratic.Theprojectiveclosureisde nedbyz2f(x;y):=F(x;y;z).Intersectingthisvarietyzzwiththehyperplanea

6、tin nityz=0givesahomogeneouspolynomialF(x;y;0)intwovariableswhichsplitsintotwolinearfactors.IfFhasadoubleroot,thevarietyintersectsthehyperplaneatonlyonepoint.SinceanynonsingularcurveinP2isisomorphictoP1,Z(F)n1=P1n1=A1.SoZ(f)=A1.IfFhastwodistinctroots,sayp;q,thentheoriginalcurveisP1minus

7、2points,whichisthesameasA1minusonepoint,callitp.Changecoordinatestosetp=0sothatthecoordinateringisk[x;1].x2.YisisomorphictoA1viathemapt7!(t;t2;t3),withinversemapbeingthe rstprojection.SoYisananevarietyofdimension1.ThisalsoshowsthatA(Y)isisomorphictoapolynomialringi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。