Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients

Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients

ID:40381356

大小:1.97 MB

页数:9页

时间:2019-08-01

Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第1页
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第2页
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第3页
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第4页
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第5页
资源描述:

《Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HindawiPublishingCorporationAdvancesinMechanicalEngineeringArticleID707106ResearchArticleDriverEyeStateClassificationBasedonCooccurrenceMatrixofOrientedGradientsBoZhang,WenjunWang,andBoChengStateKeyLaboratoryofAutomotiveSafetyandEnergy,TsinghuaUniversity,Beijing100084,ChinaCorre

2、spondenceshouldbeaddressedtoBoCheng;chengbo@tsinghua.edu.cnReceived19August2014;Accepted4November2014AcademicEditor:HongweiGuoCopyright©BoZhangetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproduct

3、ioninanymedium,providedtheoriginalworkisproperlycited.Accuratedetectionofdriver’seyestatebycomputervisioniscriticaltodriverdrowsinessmonitoring.Thehistogramoforientedgradients(HOG)iscommonlyusedasdescriptivefeatureofeyeimageforstateclassification.However,HOGoftensuffersfromtheli

4、mitoflocalgradientinformation.ThispaperproposesanewHOG-likefeatureofeyeimage,calledcooccurrencematrixoforientedgradients(CMOG),forthepurposeofmoreeffectivelyclassifyingtheeyestate.Byintroducingthecooccurrencematrix,theCMOGenhancestheabilityofdescribingglobalgradientinformationof

5、eyeimages.TheZJUeyeblinkdatabaseisusedasthebaselineimagesforperformancecomparison.TheclassificationresultsshowthattheaccuracyofCMOGreachesupto95.9%incomparisonwith91.9%byHOGunderthisdatabase.1.Introductionimportantfactorinthiskindofmethods.Manytypesoffeaturesfromeyeimageshavebee

6、nproposedbynowadaysThedrivereyestate,thatis,openingandclosing,istheresearchers,suchasHOG(HistogramsofOrientedGradi-mostsalientfacialexpressionrelatedtodriverdrowsiness.ents)[4],LBP(LocalBinaryPatterns)[5],GaborwaveletsEyestateclassificationbasedoncomputervisionplaysan[6],Eigeney

7、e[7],andASEF(AverageofSyntheticExactimportantroleinthefieldofdrowsinessmonitoring.ItisaFilters)[8].TakingLBP,forexample,itusesthedifferencechallengingtasktodetectdrowsinessfromeyeimagesowingbetweenpixelsinalocalscaletorepresenttheimagewhichtovariablefacialexpression,randomillumi

8、nation,andheadisinsensitivetoilluminationchangi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。