欢迎来到天天文库
浏览记录
ID:40372977
大小:412.84 KB
页数:10页
时间:2019-08-01
《Dependency Based Embeddings for Sentence Classification Tasks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、DependencyBasedEmbeddingsforSentenceClassificationTasksAlexandrosKomninosSureshManandharDepartmentofComputerScienceDepartmentofComputerScienceUniversityofYorkUniversityofYorkUKUKak1153@york.ac.uksuresh@cs.york.ac.ukDraft14March2016.ToappearinNAACLal.,2011;Ki
2、m,2014).WordembeddingsprovideHLT2016.bettergeneralizationtounseenexamplessincetheyAbstractcancapturegeneralsemanticandsyntacticproper-tiesofwords.OneofthemostpopularmethodsofWecomparedifferentwordembeddingsfromlearningwordembeddingsistheskipgrammodelofastan
3、dardwindowbasedskipgrammodel,Mikolovetal.(2013a;2013b)whereembeddingsaskipgrammodeltrainedusingdependencyaretrainedbymakingpredictionsofcontextwordscontextfeaturesandanovelskipgramvariantthatutilizesadditionalinformationfromde-appearinginawindowaroundatarge
4、tword.pendencygraphs.Weexploretheeffective-Thestandardskipgrammodelignoressyntaxandnessofthedifferenttypesofwordembeddingsonlypartiallytakesintoconsiderationthesequen-forwordsimilarityandsentenceclassificationtialstructureoftext,butstillcapturescertainsyn-ta
5、sks.Weconsiderthreecommonsentenceclassificationtasks:questiontypeclassifica-tacticpropertiesofwords.AsignificantamounttionontheTRECdataset,binarysentimentofpreviousresearchhasexploredmethodsfordi-classificationonStanford’sSentimentTree-rectlytakingsyntaxintoacc
6、ountforwordembed-bankandsemanticrelationclassificationondinglearning(Baronietal.,2015;ChengandKart-SemEval2010dataset.Foreachtaskweusesaklis,2015;Hashimotoetal.,2014).Onesimplethreedifferentclassificationmethods:aSup-methodisbasedontraditionalcount-baseddistr
7、ibu-portVectorMachine,aConvolutionalNeu-tionalsemanticspacesandutilizeswordswithsyn-ralNetworkandaLongShortTermMemoryNetwork.Ourexperimentsshowthatdepen-tactictypesfromadependencyparsegraphascon-dencybasedembeddingscanoutperformstan-textfeatures(PadoandLapa
8、ta,2007;Baroniand´dardwindowbasedembeddingsinmostoftheLenci,2010).Thismethodhasalsobeenappliedtotaskswhileusingdependencycontextembed-skipgrammodels,wherewordspredictdependencydingsasadditionalfeatures
此文档下载收益归作者所有