欢迎来到天天文库
浏览记录
ID:40373842
大小:314.25 KB
页数:6页
时间:2019-08-01
《an improved weighted music algorithm for small sample size scenarios》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ANIMPROVEDWEIGHTEDMUSICALGORITHMFORSMALLSAMPLESIZESCENARIOSXavierMestreCentreTecnològicdeTelecomunicacionsdeCatalunya(CTTC)ParcMediterranidelaTecnologia,Av/delCanalOlímpics/n,Castelldefels,08860Barcelona,Spainxavier.mestre@cttc.catABSTRACTbehavior,i.e.weassumethatbothquantitiesarelargebuthave
2、thesameorderofmagnitude(M→∞,N→∞,M/N→c,Anewmethodfordirectionofarrival(DoA)detectioninarray03、ubspacesig-architectures.nalprocessingalgorithmsinthelowsamplesizeregime.First,anLetusconsideracollectionofNcomplexvaluedarrayobser-asymptoticanalysisofthetraditionalMUSICalgorithmiscarriedM×1vations,y(n)∈C,n=1...Nobtainedfromanarrayofoutassumingthatthenumberofantennasandthenumberofsam-M>1sen4、sors.LetRrepresentthetrueM×Mcovariancema-plesincreasewithoutboundbuthavethesameorderofmagnitude.trixoftheobservation.AssumingthatthereareK5、betweenthesignalanddescribedasnoiseeigenvalueclustersintheasymptoticsampleeigenvaluedis-tribution.WeprovethatMUSICisinconsistentinthisasymptoticH+σ2IR=S(Θ)ΦSS(Θ)Mregime,andthatpartoftheenergyinthenoisesampleeigenvec-torsspillsintothesignalsubspacewheneverthequotientbetweenwhereS(Θ)isanM×Kmatr6、ixthatcontainsthesteeringvectorsthenumberofsamplesandthenumberofantennasisfinite.There-correspondingtotheKdifferentsources,namelyafter,weprovideaweightedMUSICalgorithmthatisspecifically£¤designedtoprovideconsistentestimatesevenwhentheobserva-S(Θ)=s(θ1)s(θ2)···s(θK)tiondimensionincreaseswithoutb7、oundatthesamerateasthe2andwhereσandΦSrespectivelydenotetheomnidirectionalnumberofobservations.Thisguaranteesagoodbehaviorinfi-backgroundnoisepowerandtheK×Ksourcecorrelationmatrix.nitesamplesizesituations,wherethenumberofsensorsandtheWewilldeno
3、ubspacesig-architectures.nalprocessingalgorithmsinthelowsamplesizeregime.First,anLetusconsideracollectionofNcomplexvaluedarrayobser-asymptoticanalysisofthetraditionalMUSICalgorithmiscarriedM×1vations,y(n)∈C,n=1...Nobtainedfromanarrayofoutassumingthatthenumberofantennasandthenumberofsam-M>1sen
4、sors.LetRrepresentthetrueM×Mcovariancema-plesincreasewithoutboundbuthavethesameorderofmagnitude.trixoftheobservation.AssumingthatthereareK5、betweenthesignalanddescribedasnoiseeigenvalueclustersintheasymptoticsampleeigenvaluedis-tribution.WeprovethatMUSICisinconsistentinthisasymptoticH+σ2IR=S(Θ)ΦSS(Θ)Mregime,andthatpartoftheenergyinthenoisesampleeigenvec-torsspillsintothesignalsubspacewheneverthequotientbetweenwhereS(Θ)isanM×Kmatr6、ixthatcontainsthesteeringvectorsthenumberofsamplesandthenumberofantennasisfinite.There-correspondingtotheKdifferentsources,namelyafter,weprovideaweightedMUSICalgorithmthatisspecifically£¤designedtoprovideconsistentestimatesevenwhentheobserva-S(Θ)=s(θ1)s(θ2)···s(θK)tiondimensionincreaseswithoutb7、oundatthesamerateasthe2andwhereσandΦSrespectivelydenotetheomnidirectionalnumberofobservations.Thisguaranteesagoodbehaviorinfi-backgroundnoisepowerandtheK×Ksourcecorrelationmatrix.nitesamplesizesituations,wherethenumberofsensorsandtheWewilldeno
5、betweenthesignalanddescribedasnoiseeigenvalueclustersintheasymptoticsampleeigenvaluedis-tribution.WeprovethatMUSICisinconsistentinthisasymptoticH+σ2IR=S(Θ)ΦSS(Θ)Mregime,andthatpartoftheenergyinthenoisesampleeigenvec-torsspillsintothesignalsubspacewheneverthequotientbetweenwhereS(Θ)isanM×Kmatr
6、ixthatcontainsthesteeringvectorsthenumberofsamplesandthenumberofantennasisfinite.There-correspondingtotheKdifferentsources,namelyafter,weprovideaweightedMUSICalgorithmthatisspecifically£¤designedtoprovideconsistentestimatesevenwhentheobserva-S(Θ)=s(θ1)s(θ2)···s(θK)tiondimensionincreaseswithoutb
7、oundatthesamerateasthe2andwhereσandΦSrespectivelydenotetheomnidirectionalnumberofobservations.Thisguaranteesagoodbehaviorinfi-backgroundnoisepowerandtheK×Ksourcecorrelationmatrix.nitesamplesizesituations,wherethenumberofsensorsandtheWewilldeno
此文档下载收益归作者所有