Time Series Forecasting Based on Augmented LSTM

Time Series Forecasting Based on Augmented LSTM

ID:40364888

大小:1.01 MB

页数:14页

时间:2019-08-01

Time Series Forecasting Based on Augmented LSTM_第1页
Time Series Forecasting Based on Augmented LSTM_第2页
Time Series Forecasting Based on Augmented LSTM_第3页
Time Series Forecasting Based on Augmented LSTM_第4页
Time Series Forecasting Based on Augmented LSTM_第5页
资源描述:

《Time Series Forecasting Based on Augmented LSTM》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TimeSeriesForecastingBasedonAugmentedLongShort-TermMemoryDanielHsuJuly7,2017AbstractInthispaper,weuserecurrentautoencodermodeltopredictthetimeseriesinsingleandmultiplestepsahead.Previouspredictionmethods,suchasrecurrentneuralnetwork(RNN)anddeepbeliefnetwork(DBN)models,cannotlearnlong

2、termdependencies.Andconventionallongshort-termmemory(LSTM)modeldoesn'trememberrecentinputs.Com-biningLSTMandautoencoder(AE),theproposedmodelcancapturelong-termdependen-ciesacrossdatapointsandusesfeaturesextractedfromrecentobservationsforaugmentingLSTMatthesametime.Basedoncomprehensiv

3、eexperiments,weshowthatthepro-posedmethodssigni cantlyimprovesthestate-of-artperformanceonchaotictimeseriesbenchmarkandalsohasbetterperformanceonreal-worlddata.Bothsingle-outputandmultiple-outputpredictionsareinvestigated.1IntroductionTimeseriesforecastingandmodelingisanimportantinte

4、rdisciplinary eldofresearch,involvingamongothersComputerSciences,Statistics,andEconometrics.MadepopularbyBoxandJenkins[1]inthe1970s,traditionalmodelingprocedurescombinelinearautoregression(AR)andmovingaverage.But,sincedataarenowadaysabundantlyavailable,oftencomplexpatternsthatarenotl

5、inearcanbeextracted.So,theneedfornonlinearforecastingproceduresarises.Recently,neuralnetworkswithdeeparchitectureshaveproventobeverysuccessfulinimage,video,audioandlanguageleaningtasks[6].Intimeseriesforecastingarea,thoughtraditionallyshallowneuralnetworksaregenerallyadopted,thedeepn

6、euralnetworkshavealsoarousedenormousinterestsamongresearchers.Deepbeliefnetworks(DBN)arefrequentlyemployedincurrentshort-termtracforecasting[7][8],andpre-trainingstrategieswithunsupervisedlearningalgorithmssuchasRestrictedBoltzmannmachine(RBM)[9]andStackedAutoEncoder(SAE)[11]arealso

7、used.However,thesedeeparchitecturescannotcapturethelongdependenciesacrossdatapointswhicharebeyondinputobservations.RNNsareparticularlysuitableformodelingdynamicalsystemsastheyoperateoninputarXiv:1707.00666v2[cs.NE]6Jul2017informationaswellasatraceofpreviouslyacquiredinformation(dueto

8、recurrentcon

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。