Surpassing Human-Level Performance on ImageNet Classification

Surpassing Human-Level Performance on ImageNet Classification

ID:40351948

大小:1.85 MB

页数:9页

时间:2019-07-31

Surpassing Human-Level Performance on ImageNet Classification_第1页
Surpassing Human-Level Performance on ImageNet Classification_第2页
Surpassing Human-Level Performance on ImageNet Classification_第3页
Surpassing Human-Level Performance on ImageNet Classification_第4页
Surpassing Human-Level Performance on ImageNet Classification_第5页
资源描述:

《Surpassing Human-Level Performance on ImageNet Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DelvingDeepintoRectifiers:SurpassingHuman-LevelPerformanceonImageNetClassificationKaimingHeXiangyuZhangShaoqingRenJianSunMicrosoftResearchAbstracttechniques[13,30,10,36],aggressivedataaugmentationRectifiedactivationunits(rectifiers)areessentialfor[18,14,29,33],andlarge-scaledata[4,26].state-

2、of-the-artneuralnetworks.Inthiswork,westudyAmongtheseadvances,therectifierneuron[24,9,23,rectifierneuralnetworksforimageclassificationfromtwo38],e.g.,RectifiedLinearUnit(ReLU),isoneofseveralaspects.First,weproposeaParametricRectifiedLinearkeystotherecentsuccessofdeepnetworks[18].Itexpe-Unit(P

3、ReLU)thatgeneralizesthetraditionalrectifiedunit.ditesconvergenceofthetrainingprocedure[18]andleadsPReLUimprovesmodelfittingwithnearlyzeroextracom-tobettersolutions[24,9,23,38]thanconventionalsigmoid-putationalcostandlittleoverfittingrisk.Second,wederivelikeunits.Despitetheprevalenceofrectifi

4、ernetworks,arobustinitializationmethodthatparticularlyconsidersrecentimprovementsofmodels[37,28,12,29,33]andtherectifiernonlinearities.Thismethodenablesustotraintheoreticalguidelinesfortrainingthem[8,27]haverarelyextremelydeeprectifiedmodelsdirectlyfromscratchandtofocusedonthepropertiesoft

5、herectifiers.investigatedeeperorwidernetworkarchitectures.BasedUnliketraditionalsigmoid-likeunits,ReLUisnotasym-onthelearnableactivationandadvancedinitialization,wemetricfunction.Asaconsequence,themeanresponseofachieve4.94%top-5testerrorontheImageNet2012clas-ReLUisalwaysnosmallerthanzero;

6、besides,evenassum-sificationdataset.Thisisa26%relativeimprovementoveringtheinputs/weightsaresubjecttosymmetricdistribu-theILSVRC2014winner(GoogLeNet,6.66%[33]).Toourtions,thedistributionsofresponsescanstillbeasymmetricknowledge,ourresultisthefirst1tosurpassthereportedbecauseofthebehaviorof

7、ReLU.ThesepropertiesofReLUhuman-levelperformance(5.1%,[26])onthisdataset.influencethetheoreticalanalysisofconvergenceandempir-icalperformance,aswewilldemonstrate.1.IntroductionInthispaper,weinvestigateneuralnetworksfromtwoaspectsparticularlydrivenbytherectifierproperties.Fi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。