slide_Large linear classification when data cannot fit in memory

slide_Large linear classification when data cannot fit in memory

ID:40351871

大小:775.97 KB

页数:40页

时间:2019-07-31

slide_Large linear classification when data cannot fit in memory_第1页
slide_Large linear classification when data cannot fit in memory_第2页
slide_Large linear classification when data cannot fit in memory_第3页
slide_Large linear classification when data cannot fit in memory_第4页
slide_Large linear classification when data cannot fit in memory_第5页
资源描述:

《slide_Large linear classification when data cannot fit in memory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LargeLinearClassi cationWhenDataCannotFitInMemoryHsiang-FuYuDepartmentofComputerScienceNationalTaiwanUniversityJointworkwithC.-J.Hsieh,K.-W.Chang,andC.-J.LinJuly27,2010Hsiang-FuYu(NationalTaiwanUniv.)June02,20101/35OutlineIntroductionABlockMinimizationFrameworkforLinearSVMsImplementationsforSVMTe

2、chniquestoReducetheTrainingTimeOtherFunctionalitiesExperimentsConclusionsHsiang-FuYu(NationalTaiwanUniv.)June02,20102/35OutlineIntroductionABlockMinimizationFrameworkforLinearSVMsImplementationsforSVMTechniquestoReducetheTrainingTimeOtherFunctionalitiesExperimentsConclusionsHsiang-FuYu(NationalTa

3、iwanUniv.)June02,20103/35LinearClassi cationRecentlylinearclassi cationisapopularresearchtopicBylinearwemeanthatkernelisnotusedThoughlinearmaynotbeasgoodasnonlinearforsomeproblems:accuracybylinearisasgoodasnonlinear,andtrainingandtestingaremuchfasterThistalkaddressesonlargelinearclassi cationHsia

4、ng-FuYu(NationalTaiwanUniv.)June02,20104/35MotivationExistingapproachesforlargelinearclassi cation:Datasmallerthanmemory:Ecientmethodsarewell-developedDatabeyonddisksize:UsuallyhandledinadistributedwayCanwehavesomethinginthebetween?Asimplesettingmemory

5、od,butonlyfordatawith#features#instancesHsiang-FuYu(NationalTaiwanUniv.)June02,20105/35WhenDataCannotFitInMemoryLIBLINEARonamachinewith1GBmemory:DiskswapcauseslengthytrainingtimeHsiang-FuYu(NationalTaiwanUniv.)June02,20106/35TheGoalGoal:constructlargelinearclassi ersforordinaryusersonasinglemach

6、ineAssumptionsmemory

7、eedtopayattentiontothesecondpartLoadingtimemaydominatethetrainingtimeevendatacan tinmemory>./liblinear-1.51/trainrcv1_test.binaryrcv1test.binary:>halfmillionsofdocumentsLoadingtime:>1minuteComputingtime:<5secondsHsiang

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。