欢迎来到天天文库
浏览记录
ID:40352225
大小:1.04 MB
页数:40页
时间:2019-07-31
《dragonstar_lecture4_linear_classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、4.LinearClassificationKaiYuLinearClassifiers•Asimplestclassificationmodel•Helptounderstandnonlinearmodels•Arguablythemostusefulclassificationmethod!2LinearClassifiers•Asimplestclassificationmodel•Helptounderstandnonlinearmodels•Arguablythemostusefulclassificationmethod!3OutlinePerceptronAlgorithmSuppo
2、rtVectorMachinesLogisticRegressionSummary4BasicNeuron5PerceptronNode–ThresholdLogicUnitx1w1xwbz22xnwnn1if∑xiwi≥bi=1z=n0if∑xiwi3、1z=.4.10n0if∑xiwi4、iIterativelyapplyanexamplefromthetrainingsetEachiterationthroughthetrainingsetisanepochContinuetraininguntiltotaltrainingerrorislessthanepsilonPerceptronConvergenceTheorem:Guaranteedtofindasolutioninfinitetimeifasolutionexists10OutlinePerceptronAlgorithmSupportVectorMachinesLogisticRegressio5、nSummary11SupportVectorMachines:Overview•Apowerfulmethodfor2-classclassification•Originalidea:Vapnik,1965forlinearclassifiers•SVM,CorteandVapnik,1995•Becomesveryhotsincelate90’s•Bettergeneralization(lessoverfitting)•Keyideas–Usekernelfunctiontotransformlowdimensionaltrainingsamplestohigherdim(forli6、nearseparabilityproblem)–Usequadraticprogramming(QP)tofindthebestclassifierboundaryhyperplane(forglobaloptimaand)αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearC7、lassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denot
3、1z=.4.10n0if∑xiwi4、iIterativelyapplyanexamplefromthetrainingsetEachiterationthroughthetrainingsetisanepochContinuetraininguntiltotaltrainingerrorislessthanepsilonPerceptronConvergenceTheorem:Guaranteedtofindasolutioninfinitetimeifasolutionexists10OutlinePerceptronAlgorithmSupportVectorMachinesLogisticRegressio5、nSummary11SupportVectorMachines:Overview•Apowerfulmethodfor2-classclassification•Originalidea:Vapnik,1965forlinearclassifiers•SVM,CorteandVapnik,1995•Becomesveryhotsincelate90’s•Bettergeneralization(lessoverfitting)•Keyideas–Usekernelfunctiontotransformlowdimensionaltrainingsamplestohigherdim(forli6、nearseparabilityproblem)–Usequadraticprogramming(QP)tofindthebestclassifierboundaryhyperplane(forglobaloptimaand)αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearC7、lassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denot
4、iIterativelyapplyanexamplefromthetrainingsetEachiterationthroughthetrainingsetisanepochContinuetraininguntiltotaltrainingerrorislessthanepsilonPerceptronConvergenceTheorem:Guaranteedtofindasolutioninfinitetimeifasolutionexists10OutlinePerceptronAlgorithmSupportVectorMachinesLogisticRegressio
5、nSummary11SupportVectorMachines:Overview•Apowerfulmethodfor2-classclassification•Originalidea:Vapnik,1965forlinearclassifiers•SVM,CorteandVapnik,1995•Becomesveryhotsincelate90’s•Bettergeneralization(lessoverfitting)•Keyideas–Usekernelfunctiontotransformlowdimensionaltrainingsamplestohigherdim(forli
6、nearseparabilityproblem)–Usequadraticprogramming(QP)tofindthebestclassifierboundaryhyperplane(forglobaloptimaand)αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearC
7、lassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denotes+1denotes-1Howwouldyouclassifythisdata?αLinearClassifiersxfyestf(x,w,b)=sign(w.x-b)denot
此文档下载收益归作者所有
点击更多查看相关文章~~