欢迎来到天天文库
浏览记录
ID:40312867
大小:27.00 KB
页数:8页
时间:2019-07-30
《【素材】《过三点的圆》(冀教)基础知识精讲》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、过三点的圆【基础知识精讲】1.基本概念经过三角形各顶点的圆叫三角形的外接圆.三角形的外接圆的圆心叫三角形的外心.三个顶点在圆上的三角形叫做这个圆的内接三角形.2.定理不在同一直线上的三个点确定一个圆.3.反证法的基本步骤①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定命题的结论正确.【重点难点解析】本节的重点在于通过尺规作图理解不共线三点确立一个圆,掌握三角形的外接圆,外心以及圆内接三角形等概念,难点是运用反证法解题.例1已知,用圆规直尺找到的圆心解:①在上任取不同的三点C
2、、D、E②顺次连结C、D、E得△CDE③作△CDE的二边CD与DE的垂直平分线相交于点O,则点O即为的圆心.说明:此例中的圆心即为△CDE的外心,而三角形的外心是其三边中垂线的交点,从而问题得以解决.例2已知直角三角形的两条直角边分别是6cm和8cm,求其外接圆半径解:∵其斜边长为:=10cm∴其外接圆半径为:×10=5cm说明:此题主要搞清直角三角形的外心就是斜边的中点,外接圆半径等于斜边的一半.例3求证:三角形中至少有一个角不大于60°证明:假设△ABC的三个角均大于60°则∠A+∠B+∠C>60°+60°+60°=1
3、80°这与∠A+∠B+∠C=180°矛盾∴命题成立说明:运用反证法证题主要是在假设的基础上推出与已知或定理相矛盾的结论.本例就是推出一个与三角形内角和定理矛盾的结论.例4求证:六条边都等于1的凸六边形至少有一条对角线的长不大于.证明:假设存在一个边长为1的凸六边形ABCDEF,其每一条对角线之长均大于,如图7-7,作BM⊥AC,∵AB=BC=1,AC>∴sin∠ABM=>∴∠ABM>60°,则∠ABC>120°那此六边形的内角之和大于120°×6=720°这与六边形的内角和等于720°矛盾∴命题成立说明:命题的结论包含的情
4、形较多,直接证明有些困难,而其反面“每条对角线之长大于”却只有一种情形,因此考虑用反证法.【难题巧解点拨】例1已知平面上有六个圆,每个圆的圆心都在其余各圆的外部.求证平面上任何一点都不会同时在此六个圆的内部.证明:已知六个圆⊙A1、⊙A2、⊙A3、⊙A4、⊙A5、⊙A6,其中每个圆的圆心都在其余各圆的外部,假设存在一点M,同时在此六个圆的内部.依题意,MA1小于⊙A1的半径,A1A2大于⊙A1的半径,∴A1A2>MA1,同样有:A1A2>A2M,考虑△MA1A2知:其最大内角为∠A1MA2,∴∠A1MA2>60°同理可证:
5、∠A2MA3,∠A3MA4,∠A4MA5,∠A5MA6,∠A6MA1均大于60°,则这六个角之和大于360°,由图7-8知这六角之和应等于360°,矛盾,所以原命题成立.说明:本例采用反证法、将问题转为三角形的内角,推出矛盾.例2设a、b、c是满足的正数,试证方程组=1①=1②有唯一实数解=1③证明:∵等边三角形内任一点到三边的距离之和等于一边上的高,∴由此作一边长为1的正△ABC,在△ABC内必存在一点P,它到三边的距离依次为、、,如图7-9,取x1=PA2,y1=PB2,z1=PC2,则(x1,y1,z1)即为方程组的
6、解.再由反证法证明唯一性,如(x2,y2,z2)也是原方程组的解,它与(x1,y1,z1)中至少有一个相对应的数不等,不妨x2≠x1,若x2>x1,则>,由方程③知:<.于是y2<y1,由方程③知z2>z1,再由方程②知x2<x1,这与x2>x1矛盾.同理若x2<x1,也会导致矛盾,故x1=x2,同理y1=y2,z1=z2,所以原方程组只有唯一的实数解.【课本难题解答】作一个圆,使它们过已知点A和B、并且圆心在已知直线l上.(1)当直线l和AB斜交时,可作几个?(2)当直线l和AB垂直但不经过AB的中点时可作几个?(3)当
7、直线l是线段AB的垂直平分线时,怎样呢?分析:所求的圆的圆心既在直线l上,又在线段AB的垂直平分线上.因此(1)可作一个圆;(2)不能作圆;(3)可作无数个圆.【知识探究学习】反证法是数学证明的一个重要方法,巧妙地运用反证法解题可使一些说不清楚的问题变得简单明了.例如本节中的例3,如果要直接说明此命题,有一种无从下手的感觉,但用反证法证明则很简单,又如要证明“是无理数”.若从正面证是没有办法的.但采用反证法就好说明了.不过反证法不是万能的,要学会对不同的命题选用不同的方法.【典型热点考题】例1已知△ABC的内切圆为⊙O,与
8、各边相切于D、E、F,那么点O是△DEF的()(2000年四川省中考题)A.三点中线的交点B.三条角平分线的交点C.三高的交点D.三边中垂线的交点分析:显然圆O与△ABC相切于D、E、F三点,因此⊙O是△DEF的内切圆,从而选B.例2求证:两条直线相交只有一个交点证明:假设两条相交直线有不只一个交点.若
此文档下载收益归作者所有