欢迎来到天天文库
浏览记录
ID:40311186
大小:29.50 KB
页数:4页
时间:2019-07-30
《【教学设计】《角的概念的推广 》(北师大)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、1《角的概念的推广》◆教材分析教科书首先通过实际问题(拧螺丝)引出角的概念的推广问题,引发学生的认知冲突,然后用具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同角的集合。这样可以使学生在自己已有经验的基础上,更好的认识任意角、象限角、终边相同的角。◆教学目标【知识与能力目标】理解任意角的概念(包括正角、负角、零角)与区间角的概念。【过程与方法目标】会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。【情感态度价值观目标】1、提高学生的推理能力; 2、培养学生应用意识;3、让学生学会用运动变化的观点认
2、识事物。◆教学重难点◆【教学重点】任意角概念的理解;区间角的集合的书写。【教学难点】终边相同角的集合的表示;区间角的集合的书写。◆课前准备◆电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。◆教学过程一、导入部分1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。二、研探新知,建构概念1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。始边终边顶点AOB②角的名称:③角的分类:负角:按顺
3、时针方向旋转形成的角正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角④注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。三、例题讲解例1、如图⑴⑵中的角分别属于第几象限角?⑵B1y⑴Ox45°B2OxB3y30°60o例2、在直角坐标系中,作出下列各角,并指出它
4、们是第几象限的角。⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;答:分别为1、2、3、4、1、2象限角。探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={β
5、β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和。注意:⑴k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同。终边相同的角有无限个,它们相差360°的整数倍;⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角。例3、在0°到360°范围内,找出与下列各角终边相等
6、的角,并判断它们是第几象限角。⑴-120°;⑵640°;⑶-950°12'答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4、写出终边在y轴上的角的集合(用0°到360°的角表示)。解:{α
7、α=90°+n·180°,n∈Z}例5、写出终边在上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来。四、课堂小结:①角的定义;②角的分类:负角:按顺时针方向旋转形成的角正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角③象限角;④终边相同的角的表示法。五、作业布置:①阅读教材P2-P5; ②教材P
8、5练习第1-5题; ③教材P.9习题1.1第1、2、3题。◆教学反思略。
此文档下载收益归作者所有