高一必修二立体几何大题练习

高一必修二立体几何大题练习

ID:40278478

大小:107.28 KB

页数:7页

时间:2019-07-30

高一必修二立体几何大题练习_第1页
高一必修二立体几何大题练习_第2页
高一必修二立体几何大题练习_第3页
高一必修二立体几何大题练习_第4页
高一必修二立体几何大题练习_第5页
资源描述:

《高一必修二立体几何大题练习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、19.如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.(1)求证:DE⊥BC;(2)求三棱锥E﹣BCD的体积.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】证明题;数形结合;数形结合法;立体几何.【分析】(1)取BC中点F,连结EF,AF,由直棱柱的结构特征和中位线定理可得四边形ADEF是平行四边形,故DE∥AF,由等腰三角形的性质可得AF⊥BC,故DE⊥BC;(2)把△BCE看做棱锥的底面,则DE为棱锥的高,求出棱锥的底面积和高,代入体积公式即可求出.【解答】证

2、明:(1)取BC中点F,连结EF,AF,则EF是△BCB1的中位线,∴EF∥BB1,EF=BB1,∵AD∥BB1,AD=BB1,∴EF∥AD,EF=AD,∴四边形ADEF是平行四边形,∴DE∥AF,∵AB=AC,F是BC的中点,∴AF⊥BC,∴DE⊥BC.(2)∵BB1⊥平面ABC,AF⊂平面ABC,∴BB1⊥AF,又∵AF⊥BC,BC⊂平面BCC1B1,BB1⊂平面BCC1B1,BC∩BB1=B,∴AF⊥平面BCC1B1,∴DE⊥平面BCC1B1,∵AC=5,BC=6,∴CF==3,∴AF==4,∴DE=AF=4∵BC=BB1=6,∴S

3、△BCE==9.∴三棱锥E﹣BCD的体积V=S△BCE•DE==12.【点评】本题考查了线面垂直的性质与判定,棱锥的体积计算,属于中档题. 21.如图,△ABC是边长为2的正三角形,AE⊥平面ABC,且AE=1,又平面BCD⊥平面ABC,且BD=CD,BD⊥CD.(1)求证:AE∥平面BCD;(2)求证:平面BDE⊥平面CDE.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)取BC的中点M,连接DM、AM,证明AE∥DM,通过直线与平面平行的判定定理证明AE∥平面BCD.(2)证明DE∥AM,

4、DE⊥CD.利用直线与平面垂直的判定定理证明CD⊥平面BDE.然后证明平面BDE⊥平面CDE.【解答】证明:(1)取BC的中点M,连接DM、AM,因为BD=CD,且BD⊥CD,BC=2,…所以DM=1,DM⊥BC,AM⊥BC,…又因为平面BCD⊥平面ABC,所以DM⊥平面ABC,所以AE∥DM,…又因为AE⊄平面BCD,DM⊂平面BCD,…所以AE∥平面BCD.…(2)由(1)已证AE∥DM,又AE=1,DM=1,所以四边形DMAE是平行四边形,所以DE∥AM.…由(1)已证AM⊥BC,又因为平面BCD⊥平面ABC,所以AM⊥平面BCD,

5、所以DE⊥平面BCD.又CD⊂平面BCD,所以DE⊥CD.…因为BD⊥CD,BD∩DE=D,所以CD⊥平面BDE.因为CD⊂平面CDE,所以平面BDE⊥平面CDE.…【点评】本题考查平面与平面垂直的判定定理的应用,直线与平面平行与垂直的判定定理的应用,考查空间想象能力逻辑推理能力.21.如图,PA垂直于矩形ABCD所在平面,AE⊥PB,垂足为E,EF⊥PC垂足为F.(Ⅰ)设平面AEF∩PD=G,求证:PC⊥AG;(Ⅱ)设PA=,M是线段PC的中点,求证:DM∥平面AEC.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【分析

6、】(Ⅰ)证明BC⊥平面ABP,可得AE⊥BC,再证明AE⊥平面PBC,PC⊥平面AEFG,即可证明:PC⊥AG;(Ⅱ)取PE中点N,连结MN,ND,BD,AC,设BD∩AC=O,连结EO,证明平面MND∥平面AEC,即可证明:DM∥平面AEC.【解答】证明:(Ⅰ)∵PA⊥平面ABCD,BC⊂平面ABCD,∴BC⊥PA;又∵BC⊥AB,PA∩AB=A,∴BC⊥平面ABP;而AE⊂平面ABP,∴AE⊥BC,又∵AE⊥PB,PB∩BC=B,∴AE⊥平面PBC;∵PC⊂平面PBC,∴PC⊥AE,又∵PC⊥EF,EF∩AE=E,∴PC⊥平面AEFG

7、,∵AG⊂平面AEFG,∴PC⊥AG…(Ⅱ)∵,∴PE=2,BE=1,即PE=2EB,取PE中点N,连结MN,ND,BD,AC,设BD∩AC=O,连结EO,则在△PEC中,PN=NE,PM=MC,∴MN∥EC,同理ND∥EO,∵MN∩ND=N,∴平面MND∥平面AEC,又∵DM⊂平面DMN,∴DM∥平面AEC…21.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.(1)求证:平面POB⊥平面PAD;(2)若PA∥平面BMO,求的值.

8、【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明四边形BCDO是平行四边形,得出OB⊥AD;再证明BO⊥平面PAD,从而证明平面POB⊥平面PAD;(2)解法一:由,M为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。