欢迎来到天天文库
浏览记录
ID:40248197
大小:198.50 KB
页数:7页
时间:2019-07-29
《全等三角形判定(提高)知识讲解》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、全等三角形判定(提高)【学习目标】1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边角边”1.全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB=,∠A=∠,AC=,则△ABC≌△.注意:这里的角,指的是两组对应边的夹角.2.有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=A
2、D,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果∠A=∠,AB=,∠B=∠,则△ABC≌△.要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样
3、就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB,=AC,=BC,则△ABC≌△.要点五、判定方法的选择1.选择哪种判定方法,要根据具体的
4、已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SASAASASA两角对应相等ASAAAS两边对应相等SASSSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、如图,AD是△ABC的中线,求证:AB+AC>
5、2AD.【思路点拨】延长AD到点E,使AD=DE,连接CE.通过证全等将AB转化到△CEA中,同时也构造出了2AD.利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD到点E,使AD=DE,连接CE.在△ABD和△ECD中,∴△ABD≌△ECD(SAS).∴AB=CE.∵AC+CE>AE,∴AC+AB>AE=2AD.即AC+AB>2AD.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB+AC>2AD,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等
6、三角形是转化线段的重要手段.可利用旋转变换,把△ABD绕点D逆时针旋转180°得到△CED,也就把AB转化到△CEA中,同时也构造出了2AD.若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.2、已知,如图:在△ABC中,∠B=2∠C,AD⊥BC,求证:AB=CD-BD.【思路点拨】在DC上取一点E,使BD=DE,则△ABD≌△AED,所以AB=AE,只要再证出EC=AE即可.【答案与解析】AEDCB证明:在DC上取一点E,使BD=DE∵AD⊥BC,∴∠ADB=∠ADE在△ABD和△AED中,∴△ABD≌△AED(SAS).∴AB=AE
7、,∠B=∠AED.又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.举一反三:【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=
8、(AB+AD),求证:∠B+∠D=180°.【答案】证明:在线段AE上,截取EF
此文档下载收益归作者所有