欢迎来到天天文库
浏览记录
ID:40246448
大小:1.96 MB
页数:65页
时间:2019-07-29
《数字逻辑电路 李中发 第2章 逻辑代数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数字逻辑电路李中发制作中国水利水电出版社第2章逻辑代数学习要点掌握逻辑代数的基本运算法则、基本公式、基本定理和化简方法。了解不同类型逻辑表达式的相互转换以及最简与或表达式。能够熟练地运用真值表、逻辑表达式、卡诺图、波形图和逻辑图表示逻辑函数。第2章逻辑代数2.1逻辑代数的基本概念2.2逻辑代数的公式、定理和规则2.3逻辑函数的化简2.4逻辑函数的表示方法及其相互转换退出2.1逻辑代数的基本概念事物往往存在两种对立的状态,在逻辑代数中可以抽象地表示为0和1,称为逻辑0状态和逻辑1状态。逻辑代数是按一定的逻辑关系进行运算的代数,是分析和设计数字电路的数学工具。在逻辑代数,只有0和1两种逻
2、辑值,有与、或、非三种基本逻辑运算,还有与或、与非、与或非、异或几种导出逻辑运算。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑变量的取值只有两种,即逻辑0和逻辑1,0和1称为逻辑常量,并不表示数量的大小,而是表示两种对立的逻辑状态。逻辑是指事物的因果关系,或者说条件和结果的关系,这些因果关系可以用逻辑运算来表示,也就是用逻辑代数来描述。2.1.1基本逻辑运算1、与运算与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足时,事件(Y)才能发生。表达式为:开关A,B串联控制灯泡YY=ABC…两个开关必须同时接通,灯才亮。逻辑表达式为:Y=ABA、B都断开,灯不亮。
3、A断开、B接通,灯不亮。A接通、B断开,灯不亮。A、B都接通,灯亮。这种把所有可能的条件组合及其对应结果一一列出来的表格叫做真值表。将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如下表格来描述与逻辑关系:功能表实现与逻辑的电路称为与门。与门的逻辑符号:Y=AB真值表逻辑符号2、或运算或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,…)中,只要有一个或多个条件具备,事件(Y)就发生。表达式为:开关A,B并联控制灯泡YY=A+B+C+…两个开关只要有一个接通,灯就会亮。逻辑表达式为:Y=A+BA、B都断开,灯不亮。A断开、B接通,灯亮。A接通、B断开,灯亮。A、
4、B都接通,灯亮。实现或逻辑的电路称为或门。或门的逻辑符号:Y=A+B真值表功能表逻辑符号3、非运算非逻辑指的是逻辑的否定。当决定事件(Y)发生的条件(A)满足时,事件不发生;条件不满足,事件反而发生。表达式为:Y=A开关A控制灯泡Y实现非逻辑的电路称为非门。非门的逻辑符号:Y=AA断开,灯亮。A接通,灯灭。真值表功能表逻辑符号(1)与非运算:逻辑表达式为:(2)或非运算:逻辑表达式为:2.1.2复合逻辑运算(3)异或运算:逻辑表达式为:(4)与或非运算:逻辑表达式为:(1)逻辑表达式:由逻辑变量和与、或、非3种运算符连接起来所构成的式子。在逻辑表达式中,等式右边的字母A、B、C、D等
5、称为输入逻辑变量,等式左边的字母Y称为输出逻辑变量,字母上面没有非运算符的叫做原变量,有非运算符的叫做反变量。(2)逻辑函数:如果对应于输入逻辑变量A、B、C、…的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称Y是A、B、C、…的逻辑函数。记为注意:与普通代数不同的是,在逻辑代数中,不管是变量还是函数,其取值都只能是0或1,并且这里的0和1只表示两种不同的状态,没有数量的含义。2.1.3逻辑函数及其相等概念(3)逻辑函数相等的概念:设有两个逻辑函数它们的变量都是A、B、C、…,如果对应于变量A、B、C、…的任何一组变量取值,Y1和Y2的值都相同,则称Y1和Y2是相等的,记为Y1=
6、Y2。若两个逻辑函数相等,则它们的真值表一定相同;反之,若两个函数的真值表完全相同,则这两个函数一定相等。因此,要证明两个逻辑函数是否相等,只要分别列出它们的真值表,看看它们的真值表是否相同即可。证明等式:2.2逻辑代数的公式、定理和规则2.2.1逻辑代数的公式和定理(1)常量之间的关系(2)基本公式分别令A=0及A=1代入这些公式,即可证明它们的正确性。(3)基本定理利用真值表很容易证明这些公式的正确性。如证明A·B=B·A:(A+B)(A+C)=AA+AB+AC+BC分配率A(B+C)=AB+AC=A+AB+AC+BC等幂率AA=A=A(1+B+C)+BC分配率A(B+C)=AB
7、+AC=A+BC0-1率A+1=1证明分配率:A+BA=(A+B)(A+C)证明:(4)常用公式分配率A+BC=(A+B)(A+C)互补率A+A=10-1率A·1=1互补率A+A=1分配率A(B+C)=AB+AC0-1率A+1=1例如,已知等式 ,用函数Y=AC代替等式中的A,根据代入规则,等式仍然成立,即有:(1)代入规则:任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。2.2.2逻
此文档下载收益归作者所有