【9A文】历届全国大学生数学竞赛真题及答案非数学类

【9A文】历届全国大学生数学竞赛真题及答案非数学类

ID:40206293

大小:460.50 KB

页数:16页

时间:2019-07-25

【9A文】历届全国大学生数学竞赛真题及答案非数学类_第1页
【9A文】历届全国大学生数学竞赛真题及答案非数学类_第2页
【9A文】历届全国大学生数学竞赛真题及答案非数学类_第3页
【9A文】历届全国大学生数学竞赛真题及答案非数学类_第4页
【9A文】历届全国大学生数学竞赛真题及答案非数学类_第5页
资源描述:

《【9A文】历届全国大学生数学竞赛真题及答案非数学类》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【MeiWei_81重点借鉴文档】高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。)20RR年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解:令,则,,(R)令,则,,,2.设是连续函数,且满足,则____________.解:令,则,,解得。因此。3.曲面平行平面的切平面方程是__________.解:因平面的法向量为,而曲面在【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】处的法向

2、量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。4.设函数由方程确定,其中具有二阶导数,且,则________________.解:方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解:因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】解:由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证:因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是

3、对称的,即知因此(2)因【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】解因抛物线过原点,

4、故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足,且,求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时,与等价的无穷大量.解令,则因当,时,,故在上严格单调减。因此即,又,【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】,所以,当时,与等价的无穷大量是。20RR年第二届全国大学生数学竞赛预赛试卷(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,

5、适当看一些辅导书及相关题目,主要是一些各大高校的试题。)一、(25分,每小题5分)(1)设其中求(2)求。(3)设,求。(4)设函数有二阶连续导数,,求。(5)求直线与直线的距离。解:(1)====(2)令R=1/t,则原式=(3)二、(15分)设函数在上具有二阶导数,并且且存在一点,使得。证明:方程在恰有两个实根。解:二阶导数为正,则一阶导数单增,f(R)先减后增,因为f(R)有小于0的值,所以只需在两边找两大于0的值。将f(R)二阶泰勒展开:【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】因为二阶倒数大于0,所以,证明完成。三、(15分)设函数由参数方程所确定,其中

6、具有二阶导数,曲线与在出相切,求函数。解:(这儿少了一个条件)由与在出相切得,=。。。上式可以得到一个微分方程,求解即可。四、(15分)设证明:(1)当时,级数收敛;(2)当且时,级数发散。解:(1)>0,单调递增当收敛时,,而收敛,所以收敛;当发散时,所以,而,收敛于k。所以,收敛。(2)【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】所以发散,所以存在,使得于是,依此类推,可得存在使得成立,所以当时,,所以发散五、(15分)设是过原点、方向为,(其中的直线,均匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。解:(1)椭

7、球上一点P(R,R,z)到直线的距离由轮换对称性,(2)当时,当时,六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线证明(2)求函数;【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】(3)设是围绕原点的光滑简单正向闭曲线,求。解:(1)L不绕原点,在L上取两点A,B,将L分为两段,,再从A,B作一曲线,使之包围原点。则有(2)令由(1)知

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。