欢迎来到天天文库
浏览记录
ID:40151591
大小:365.50 KB
页数:8页
时间:2019-07-23
《【7A文】高中数学专题训练—抽象函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【MeiWei_81-优质适用文档】高中数学专题训练(一)——抽象函数1.已知函数y=f(x)(x∈R,x≠0)对任意的非零实数,,恒有f()=f()+f(),试判断f(x)的奇偶性。2已知定义在[-2,2]上的偶函数,f(x)在区间[0,2]上单调递减,若f(1-m)2、义R在上的函数,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y)且f(0)≠0.(1)求证f(0)=1;(2)求证:y=f(x)为偶函数.7.已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?8.设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有>0(1).若a>b,试比较f(a)与f(b)的大小;(2).若f(k<0对x∈[-1,1]恒成立,求实数k的取值范围。9.已知函数是定义在(-∞,3]上的减函数,已知对恒成立,求实数的取值范围。10.已知函数当时,恒有.(1)求证:是奇函数3、;(2)若.11.已知是定义在R上的不恒为零的函数,且对于任意的都满足:.(1)求的值;(2)判断的奇偶性,并证明你的结论;(3)若,,求数列{}的前项和.【MeiWei_81-优质适用文档】【MeiWei_81-优质适用文档】12.已知定义域为R的函数满足.(1)若(2)设有且仅有一个实数,使得,求函数的解析表达式.13.已知函数的定义域为R,对任意实数都有,且,当时,>0.(1)求;(2)求和;(3)判断函数的单调性,并证明.14.函数的定义域为R,并满足以下条件:①对任意,有>0;②对任意,有;③.(1)求的值;(2)求证:在R上是单调减函数;(3)若且,求证:.15.已知函数的4、定义域为R,对任意实数都有,且当时,.(1)证明:;(2)证明:在R上单调递减;(3)设A=,B={},若=,试确定的取值范围.16.已知函数是定义在R上的增函数,设F.(1)用函数单调性的定义证明:是R上的增函数;(2)证明:函数=的图象关于点(成中心对称图形.17.已知函数是定义域为R的奇函数,且它的图象关于直线对称.(1)求的值;(2)证明:函数是周期函数;(3)若求当时,函数的解析式,并画出满足条件的函数至少一个周期的图象.18.函数对于x>0有意义,且满足条件减函数。(1)证明:;(2)若成立,求x的取值范围。19.设函数在上满足,,且在闭区间[0,7]上,只有.【MeiWe5、i_81-优质适用文档】【MeiWei_81-优质适用文档】(1)试判断函数的奇偶性;(2)试求方程=0在闭区间[-20KK,20KK]上的根的个数,并证明你的结论.20.已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。21.已知函数f(x)对任意,满足条件f(x)+f(y)=2+f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。参考答案:1.解:令=-1,=x,得f(-x)=f(-1)+f(x)……①为了求f(-1)的值,令=1,=-1,则f(-1)=f(16、)+f(-1),即f(1)=0,再令==-1得f(1)=f(-1)+f(-1)=2f(-1)∴f(-1)=0代入①式得f(-x)=f(x),可得f(x)是一个偶函数。2.分析:根据函数的定义域,-m,m∈[-2,2],但是1-m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f(x)有性质f(-x)=f(x)=f(7、x8、),就可避免一场大规模讨论。解:∵f(x)是偶函数,f(1-m)9、-f(x+3)=f(x),故6是函数f(x)的一个周期。又f(x)是奇函数,且在x=0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。4.解:由f(=f(,知f(x)=f(≥0,x,f(1)=2,同理可得5.解:从自变量值20KK和1进行比较及根据已知条件来看,易联想到函数f(x)是周期函数。由条件得f(x)≠1,故f(x+2)=f(x+4)=.所以f(x+8)=.所以f(x)是以8为周期的周期函数,从而f(20K
2、义R在上的函数,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y)且f(0)≠0.(1)求证f(0)=1;(2)求证:y=f(x)为偶函数.7.已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?8.设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有>0(1).若a>b,试比较f(a)与f(b)的大小;(2).若f(k<0对x∈[-1,1]恒成立,求实数k的取值范围。9.已知函数是定义在(-∞,3]上的减函数,已知对恒成立,求实数的取值范围。10.已知函数当时,恒有.(1)求证:是奇函数
3、;(2)若.11.已知是定义在R上的不恒为零的函数,且对于任意的都满足:.(1)求的值;(2)判断的奇偶性,并证明你的结论;(3)若,,求数列{}的前项和.【MeiWei_81-优质适用文档】【MeiWei_81-优质适用文档】12.已知定义域为R的函数满足.(1)若(2)设有且仅有一个实数,使得,求函数的解析表达式.13.已知函数的定义域为R,对任意实数都有,且,当时,>0.(1)求;(2)求和;(3)判断函数的单调性,并证明.14.函数的定义域为R,并满足以下条件:①对任意,有>0;②对任意,有;③.(1)求的值;(2)求证:在R上是单调减函数;(3)若且,求证:.15.已知函数的
4、定义域为R,对任意实数都有,且当时,.(1)证明:;(2)证明:在R上单调递减;(3)设A=,B={},若=,试确定的取值范围.16.已知函数是定义在R上的增函数,设F.(1)用函数单调性的定义证明:是R上的增函数;(2)证明:函数=的图象关于点(成中心对称图形.17.已知函数是定义域为R的奇函数,且它的图象关于直线对称.(1)求的值;(2)证明:函数是周期函数;(3)若求当时,函数的解析式,并画出满足条件的函数至少一个周期的图象.18.函数对于x>0有意义,且满足条件减函数。(1)证明:;(2)若成立,求x的取值范围。19.设函数在上满足,,且在闭区间[0,7]上,只有.【MeiWe
5、i_81-优质适用文档】【MeiWei_81-优质适用文档】(1)试判断函数的奇偶性;(2)试求方程=0在闭区间[-20KK,20KK]上的根的个数,并证明你的结论.20.已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。21.已知函数f(x)对任意,满足条件f(x)+f(y)=2+f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。参考答案:1.解:令=-1,=x,得f(-x)=f(-1)+f(x)……①为了求f(-1)的值,令=1,=-1,则f(-1)=f(1
6、)+f(-1),即f(1)=0,再令==-1得f(1)=f(-1)+f(-1)=2f(-1)∴f(-1)=0代入①式得f(-x)=f(x),可得f(x)是一个偶函数。2.分析:根据函数的定义域,-m,m∈[-2,2],但是1-m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f(x)有性质f(-x)=f(x)=f(
7、x
8、),就可避免一场大规模讨论。解:∵f(x)是偶函数,f(1-m)9、-f(x+3)=f(x),故6是函数f(x)的一个周期。又f(x)是奇函数,且在x=0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。4.解:由f(=f(,知f(x)=f(≥0,x,f(1)=2,同理可得5.解:从自变量值20KK和1进行比较及根据已知条件来看,易联想到函数f(x)是周期函数。由条件得f(x)≠1,故f(x+2)=f(x+4)=.所以f(x+8)=.所以f(x)是以8为周期的周期函数,从而f(20K
9、-f(x+3)=f(x),故6是函数f(x)的一个周期。又f(x)是奇函数,且在x=0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。4.解:由f(=f(,知f(x)=f(≥0,x,f(1)=2,同理可得5.解:从自变量值20KK和1进行比较及根据已知条件来看,易联想到函数f(x)是周期函数。由条件得f(x)≠1,故f(x+2)=f(x+4)=.所以f(x+8)=.所以f(x)是以8为周期的周期函数,从而f(20K
此文档下载收益归作者所有