欢迎来到天天文库
浏览记录
ID:40148282
大小:31.13 KB
页数:5页
时间:2019-07-23
《高斯的成就和启示》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、“数学王子”高斯的成就和启示【摘要】正如亨利·庞加莱所说:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。”高斯是近代数学奠基者之一,和牛顿、阿基米德被誉为数学史上三大杰出的数学家。他的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都作出了开创性的贡献,“数学王子”是对他一生的成就恰如其份的颂赞。除此之外,高斯还在天文学、大地测量学和物理学有杰出的研究成果,为后世人们的研究工作奠定基础。本论文主要从数学领域谈谈高斯的重要成就和给我们的启示,并圆内接正十七边形的画法。【关键词】高斯成长经历数学成就正十七边形启发一、家庭背景“数学王子”高斯的门
2、第决不是王族。约翰·卡尔·弗里德里希·高斯(JohannKarlFriederichGauss,1777年4月30日—1855年2月23日)出生于德意志不伦瑞克一个简陋的村舍里。高斯的祖父是一个贫穷的农民,生活贫困。父亲格哈德作为园丁、水渠管理人和砌砖工人艰苦地劳动一生,是一个正直、极为诚实的粗鲁的人。孩提时代的高斯尊重顺从他的父亲,并且秉承了其父诚实、谨慎的性格。然而他的父亲常常根据自己的人生经验来为年幼的高斯规划人生,曾尽一切力量加以阻挠儿子完成不朽的工作。幸运的是,高斯有一位鼎力支持他成才的母亲罗捷雅和慧眼识才的舅舅弗里德里希。罗捷雅真诚地希望儿子能干出一番伟大的事业,她对高斯的才华
3、极为珍视。然而,她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了一些伟大的数学成就,但她仍向数学界的朋友波尔约问道:“高斯将来会有出息吗?”波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。高斯的舅舅弗里德里希是一个非常聪明有天分的人,他发现他姐姐的孩子有着敏锐、不肯安静的头脑,于是就在这个年轻天才的身上倾注自己的才智,通过他特殊的人生哲学唤起高斯的敏捷的逻辑思维。正是由于弗里德里希的慧眼识才,才使得高斯走上科学研究的道路,成为一位罕见的“数学王子”。二、数学成就在整个数学史中,从没有过像高斯那样早熟的。人们不知道阿基米德在什么时候显
4、露出天才的迹象。牛顿最早表现出他极高的数学才能时,可能也没有受到注意。虽然看起来难以置信,高斯却在3岁以前就显示出了他的天才。有一天,他观看父亲算帐,计算结束后,父亲念出了钱数准备写下时,身边传来细小的声音:“爸爸,算错了,应该是……”。核对账单的结果,表明高斯说的数是对的。10岁时,他的老师出了一道数学题:求1+2+3+4+……+100。而高斯在五分钟后就给出了正确答案:5050。高斯是这样计算的:1与100、2与99、3与98……每一对的和都是101,而100以内这样的数共有50对,101×50=5050。他的这种计算方法,代数上称为等差级数求和公式。1792年,高斯进人布伦斯维克的著
5、名学院(卡罗琳学院)深造,攻读了牛顿、欧拉和拉格朗日等人的著作,并且立刻精通了这些数学家的著作。1795年,高斯进入哥廷根大学,第一年就发明了最小二乘法。第二年又严格地得出了可用直尺圆规作图的正多边形的条件:边数必须是或,从而宣布了自欧几里德以来几何作图上的一项成就——发现正十七边形的作图法,并用代数方法和几何图形结合起来证明了这一作图方法。为了纪念高斯这一成就,在哥庭根大学的校园里,高斯的塑像下特意砌了正十七边形的底座。同年,高斯又发表并证明了著名的数论方面的定理——二次互反律。这一定理欧拉早已发现,但是欧拉和勒让德都没有能力加以证明。这是高斯的得意之作,一生曾用八种方法证明,称之为“黄
6、金律”。1799年,高斯又证明了一个重要的定理:任何一元代数方程都有一个根。这一结果数学上称为“代数基本定理”,也被称做“高斯定理”。1801年,高斯出版了他的《算术研究》。在此之后,他把他的活动范围扩大到天文学、大地测量学、电磁学等领域中的数学和实用两个方面。1825年到1831年,高斯仍在数论方面作出贡献,继二次剩余论之后,又借助于他的复数理论提出了四次剩余论,又发现了一种用复数来对奇数进行因式分解的方法,例如的形式,生动地表示新的素数(即质数)论的诞生。在1828年,高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发
7、展。高斯对待学问十分严谨,不轻易发表他的著作,除非他相信这篇著作已达到完美无缺的地步。任何结论,不论多么重要,都要等他认为完善之后才发表,因此高斯一生共发表155篇论文,而遗下了大量的稿件,他的许多成就都是他死后在他的草稿和日记中发掘的。高斯的科学日记(Notizenjournai)是数学史上最宝贵的文件之一。第一篇记录了他的伟大发现。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现
此文档下载收益归作者所有