资源描述:
《Willmore two-spheres in the four-sphere》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TRANSACTIONSOFTHEAMERICANMATHEMATICALSOCIETYVolume352,Number10,Pages4469{4486S0002-9947(00)02571-XArticleelectronicallypublishedonJune13,2000WILLMORETWO-SPHERESINTHEFOUR-SPHERESEBASTIANMONTIELAbstract.GenuszeroWillmoresurfacesimmersedinthethree-sphereS3correspondviathe
2、stereographicprojectiontominimalsurfacesinEuclideanthree-spacewithnitetotalcurvatureandembeddedplanarends.ThecriticalvaluesoftheWillmorefunctionalare4k,wherek2N,withk6=2;3;5;7.Whentheambientspaceisthefour-sphereS4,theregularhomotopyclassofimmersionsofthetwo-sphereS2i
3、sdeterminedbytheself-intersectionnumberq2Z;hereweshallprovethatthepossiblecriticalvaluesare4(jqj+k+1),wherek2N.Moreover,ifk=0,thecorrespondingimmersion,oritsantipo-dal,isobtained,viathetwistorPenrosebrationP3!S4,fromarationalcurveinP3and,ifk6=0,viastereographicproject
4、ion,fromaminimalsurfaceinR4withnitetotalcurvatureandembeddedplanarends.AnimmersionliesinbothfamilieswhentherationalcurveiscontainedinsomeP2P3or(equivalently)whentheminimalsurfaceofR4iscomplexwithrespecttoasuitablecomplexstructureofR4.1.IntroductionAlthoughthestudyofco
5、nformalinvariantsofsubmanifoldsreceivedsomeatten-tionintheclassicalgeometryofsurfaces,andlaterfromBlaschke[Bl]andothers,itremainedalmostunknownuntil1965.Inthatyear,Willmore[Wi1]proposedthestudyofaglobalconformalinvariantforcompactsurfacesinEuclideanspaces,oftencalledthe
6、Willmorefunctional,thatassociatestoanimmersion:!Rnfromacompactsurface,theconformallyinvariantintegralZ2W()=jHjdA;whereHdenotesthemeancurvaturevectoroftheimmersionanddAistheareameasureoftheinducedmetric.OneeasilyobtainsthattheabsoluteminimumforWis4,whichisattainedo
7、nlybytheumbilicalspheres.Whenthegenusofisone(thatis,whenisatorus)theminimumvalueofWwasconjecturedbyWillmoretobe22andtobereachedonlyby(stereographicprojectionof)theCliordtorus.Thisconjectureremainsopen,althoughtherearesomegoodapproacheswhichhavebeensourcesofnewideas,
8、suchas[Wi2],[LY],[K1],[K2],[MRo].Veryrecently,A.Roshassolvedtheconjectureincasethetorusisinvariantunderanantip