The existence of minimal immersions of two-spheres

The existence of minimal immersions of two-spheres

ID:39989791

大小:311.47 KB

页数:4页

时间:2019-07-16

The existence of minimal immersions of two-spheres_第1页
The existence of minimal immersions of two-spheres_第2页
The existence of minimal immersions of two-spheres_第3页
The existence of minimal immersions of two-spheres_第4页
资源描述:

《The existence of minimal immersions of two-spheres》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BULLETINOFTHEAMERICANMATHEMATICALSOCIETYVolume83,Number5,September1977THEEXISTENCEOFMINIMALIMMERSIONSOFTWO-SPHERESBYJ.SACKSANDK.UHLENBECK1CommunicatedbyS.S.Chern,February18,1977Inthisarticleweannounceaseriesofresultsontheexistenceofharmonicmapsfromsurfac

2、estoRiemannianmanifoldsand,ascorollariesoftheseresults,obtaintheoremsontheexistenceofminimalimmersionsof2-spheres.LetNbeacompactconnectedRiemannianmanifoldand,forconvenience,assumethatNisisometricallyimbeddedinRkforsomesufficientlylargek.LetMbeaclosedRie

3、mannsurfacewithanymetriccompatiblewithitsconformaistructure.AmapsGL(M,Rk)OC°(M,N)iscalledharmonicifitisanextre•malmapoftheenergyintegralE(s)=JM'*

4、2*%=JMtraceKx)dtxMwhereki(x)=2**®**(*)Grçcw)®^(w)-/=iHarmonicmapssatisfyanEuler-LagrangeequationAs+A(s)(dsf

5、ds)=0inaweaksense,whereAisthesecondfundamentalformoftheimbeddingNCRfc.ItthenfollowsfromregularitytheoremsthatharmonicmapsareC°°.Ifsisharmonicandaconformaiimmersion,itisalsoanextremalfortheareainte•gral.ProvingtheexistenceofharmonicmapsofMintoNbydirectmet

6、hodsfromglobalanalysissuchasMorsetheoryorLjusternik-Schnirelmantheoryap•pliedtoEdefinedonsomefunctionspacemanifoldisdifficult,becauseEisin•variantundertheconformaigroupofMyandtheextremalmapsofEformanon-compactsetwhenM=S2.Inparticular,Edoesnotsatisfycondi

7、tionCofPalais-Smale.However,fora>1,aslightlydifferentintegral,AMS(MOS)subjectclassifications(1970).Primary53A10,58E05.1ResearchsupportedbyNSFgrantsMCS76-06319andMCS76-07541,Copyright©1977,AmericanMathematicalSociety10331034J.SACKSANDK.UHLENBECKforsGL2a(M

8、,Rk)OC°(M,TV)=L2ot(M,TV),isC2andsatisfiesthePalais-SmaleconditionCinacompleteFinslermetriconL^M,TV).IfwenormalizetheareaofMtobe1then,asa—»1,Ea(s)—•E(s)+1.ByexaminingtheconvergenceofasequencesaofcriticalmapsofEaasa—>1,variousresultsontheexistenceofharmoni

9、cmapsareobtained.MAINCONVERGENCETHEOREM.Letsa(/)beasequenceofcriticalmapsofE^ya(z)>1,lim^^a(z)=1.Thenthereexistasubsequencei,aharmon•icmaps:M—>Nandafinitenumberofpoints{xt,...,xt}suchthatsa^—•sinCX(M-{xj,...,xt},TV).Moreov

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。