欢迎来到天天文库
浏览记录
ID:40104103
大小:3.57 MB
页数:731页
时间:2019-07-21
《The Minimum Description Length Principle》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TheMinimumDescriptionLengthPrinciplePeterD.GrünwaldTheMITPressCambridge,MassachusettsLondon,England©2007MassachusettsInstituteofTechnologyAllrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(includingphotocopying,record
2、ing,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisher.TypesetinPalatinobytheauthorusingLATEX2εwithC.Manning’sfbook.clsandstatnlpbook.stymacros.PrintedandboundintheUnitedStatesofAmerica.LibraryofCongressCataloging-in-PublicationInfo
3、rmationGrünwald,PeterD.Theminimumdescriptionlengthprinciple/PeterD.Grünwald.p.cm.—(Adaptivecomputationandmachinelearning)Includesbibliographicalreferencesandindex.ISBN-13:978-0-262-07281-6(alk.paper)1.Minimumdescriptionlength(Informationtheory)I.TitleQA276.
4、9G782007003’.54—dc22200604664610987654321BriefContentsIIntroductoryMaterial11Learning,Regularity,andCompression32ProbabilisticandStatisticalPreliminaries413Information-TheoreticPreliminaries794Information-TheoreticPropertiesofStatisticalModels1095CrudeTwo-P
5、artCodeMDL131IIUniversalCoding1656UniversalCodingwithCountableModels1717ParametricModels:NormalizedMaximumLikelihood2078ParametricModels:Bayes2319ParametricModels:PrequentialPlug-in25710ParametricModels:Two-Part27111NMLWithInfiniteComplexity29512LinearRegres
6、sion33513BeyondParametrics369IIIRefinedMDL40314MDLModelSelection40915MDLPredictionandEstimation45916MDLConsistencyandConvergence50117MDLinContext523viiiBriefContentsIVAdditionalBackground59718TheExponentialor“MaximumEntropy”Families59919Information-Theoretic
7、PropertiesofExponentialFamilies623ContentsListofFiguresxixSeriesForewordxxiForewordxxiiiPrefacexxvIIntroductoryMaterial11Learning,Regularity,andCompression31.1RegularityandLearning41.2RegularityandCompression41.3Solomonoff’sBreakthrough–KolmogorovComplexity
8、81.4MakingtheIdeaApplicable101.5CrudeMDL,RefinedMDLandUniversalCoding121.5.1FromCrudetoRefinedMDL141.5.2UniversalCodingandRefinedMDL171.5.3RefinedMDLforModelSelection181.5.4RefinedMDLforPredictionandHypothe
此文档下载收益归作者所有