The Minimum Description Length Principle

The Minimum Description Length Principle

ID:40104103

大小:3.57 MB

页数:731页

时间:2019-07-21

The Minimum Description Length Principle_第1页
The Minimum Description Length Principle_第2页
The Minimum Description Length Principle_第3页
The Minimum Description Length Principle_第4页
The Minimum Description Length Principle_第5页
资源描述:

《The Minimum Description Length Principle》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheMinimumDescriptionLengthPrinciplePeterD.GrünwaldTheMITPressCambridge,MassachusettsLondon,England©2007MassachusettsInstituteofTechnologyAllrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(includingphotocopying,record

2、ing,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisher.TypesetinPalatinobytheauthorusingLATEX2εwithC.Manning’sfbook.clsandstatnlpbook.stymacros.PrintedandboundintheUnitedStatesofAmerica.LibraryofCongressCataloging-in-PublicationInfo

3、rmationGrünwald,PeterD.Theminimumdescriptionlengthprinciple/PeterD.Grünwald.p.cm.—(Adaptivecomputationandmachinelearning)Includesbibliographicalreferencesandindex.ISBN-13:978-0-262-07281-6(alk.paper)1.Minimumdescriptionlength(Informationtheory)I.TitleQA276.

4、9G782007003’.54—dc22200604664610987654321BriefContentsIIntroductoryMaterial11Learning,Regularity,andCompression32ProbabilisticandStatisticalPreliminaries413Information-TheoreticPreliminaries794Information-TheoreticPropertiesofStatisticalModels1095CrudeTwo-P

5、artCodeMDL131IIUniversalCoding1656UniversalCodingwithCountableModels1717ParametricModels:NormalizedMaximumLikelihood2078ParametricModels:Bayes2319ParametricModels:PrequentialPlug-in25710ParametricModels:Two-Part27111NMLWithInfiniteComplexity29512LinearRegres

6、sion33513BeyondParametrics369IIIRefinedMDL40314MDLModelSelection40915MDLPredictionandEstimation45916MDLConsistencyandConvergence50117MDLinContext523viiiBriefContentsIVAdditionalBackground59718TheExponentialor“MaximumEntropy”Families59919Information-Theoretic

7、PropertiesofExponentialFamilies623ContentsListofFiguresxixSeriesForewordxxiForewordxxiiiPrefacexxvIIntroductoryMaterial11Learning,Regularity,andCompression31.1RegularityandLearning41.2RegularityandCompression41.3Solomonoff’sBreakthrough–KolmogorovComplexity

8、81.4MakingtheIdeaApplicable101.5CrudeMDL,RefinedMDLandUniversalCoding121.5.1FromCrudetoRefinedMDL141.5.2UniversalCodingandRefinedMDL171.5.3RefinedMDLforModelSelection181.5.4RefinedMDLforPredictionandHypothe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。