Survey of Clustering Algorithms

Survey of Clustering Algorithms

ID:40102809

大小:1.49 MB

页数:34页

时间:2019-07-21

Survey of Clustering Algorithms_第1页
Survey of Clustering Algorithms_第2页
Survey of Clustering Algorithms_第3页
Survey of Clustering Algorithms_第4页
Survey of Clustering Algorithms_第5页
资源描述:

《Survey of Clustering Algorithms》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONNEURALNETWORKS,VOL.16,NO.3,MAY2005645SurveyofClusteringAlgorithmsRuiXu,StudentMember,IEEEandDonaldWunschII,Fellow,IEEEAbstract—Dataanalysisplaysanindispensableroleforun-[60],[167].Whentheinducerreachesconvergenceortermi-derstandingvariousphenomena.Clusteranalysis,primit

2、ivenates,aninducedclassifierisgenerated[167].explorationwithlittleornopriorknowledge,consistsofresearchInunsupervisedclassification,calledclusteringorex-developedacrossawidevarietyofcommunities.Thediversity,ploratorydataanalysis,nolabeleddataareavailable[88],ononehand,equipsuswithmanytools

3、.Ontheotherhand,theprofusionofoptionscausesconfusion.Wesurveyclustering[150].Thegoalofclusteringistoseparateafiniteunlabeledalgorithmsfordatasetsappearinginstatistics,computerscience,datasetintoafiniteanddiscretesetof“natural,”hiddendataandmachinelearning,andillustratetheirapplicationsinso

4、mestructures,ratherthanprovideanaccuratecharacterizationbenchmarkdatasets,thetravelingsalesmanproblem,andbioin-ofunobservedsamplesgeneratedfromthesameprobabilityformatics,anewfieldattractingintensiveefforts.Severaltightlydistribution[23],[60].Thiscanmakethetaskofclusteringfallrelatedtopic

5、s,proximitymeasure,andclustervalidation,arealsodiscussed.outsideoftheframeworkofunsupervisedpredictivelearningproblems,suchasvectorquantization[60](seeSectionII-C),IndexTerms—Adaptiveresonancetheory(ART),clustering,probabilitydensityfunctionestimation[38](seeSectionII-D),clusteringalgori

6、thm,clustervalidation,neuralnetworks,prox-imity,self-organizingfeaturemap(SOFM).[60],andentropymaximization[99].Itisnoteworthythatclusteringdiffersfrommultidimensionalscaling(perceptualmaps),whosegoalistodepictalltheevaluatedobjectsinaI.INTRODUCTIONwaythatminimizesthetopographicaldistort

7、ionwhileusingasEARElivinginaworldfullofdata.Everyday,peoplefewdimensionsaspossible.Alsonotethat,inpractice,manyWencounteralargeamountofinformationandstoreor(predictive)vectorquantizersarealsousedfor(nonpredictive)representitasdata,forfurtheranalysisandmanagement.Onecluste

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。