欢迎来到天天文库
浏览记录
ID:40098147
大小:395.87 KB
页数:64页
时间:2019-07-21
《《初中数学课程培训》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初中数学课程标准解读与教材分析《数与代数》一、数学课程总目标:知识与技能数学思考解决问题情感与态度(一)学段目标:第三学段(7~9年级《数与代数》)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。数学思考:能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系。解决问题:能结合具体情境发现并提出数学问题。尝试从不同角度寻求解决问题的方法并能有效地解决问题,尝试评价不同方法之间的差异。体会在解决
2、问题的过程中与他人合作的重要性。能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。通过对解决问题过程的反思,获得解决问题的经验。情感与态度:乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。体验数、符号和图形是有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。通过这阶段的数学学
3、习,学生能够具备以下素质:获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法(常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合)和必要的应用技能;初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。《整式的加减》教学设计一、 教 学 目 标知识技能1.理解同类项的概念,并能正确辨别同类项。2.掌握合并同类项的方法。
4、3. .掌握整式加减的方法。数学思考1.通过活动的探究,培养学生的观察能力和探究能力。2.通过计算两个长方体纸盒的用料情况,发展学生的空间想象能力,初步培养学生的符号感。解决问题: 通过计算两个个长方体纸盒的用料情况,初步学会从实际问题入手,尝试从数学的角度提出问题、理解问题,并运用所学的知识和技能解决问题,进一步发展学生的应用意识。情感态度: 培养学生合作交流的意识和探索精神。二、重点: 整式加减运算的一般步骤,能正确地进行整式的加减运算。三、难点:利用整式的加减运算,解决简单的实际问题。(二)、数学课程标准内容课程的内容有“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个
5、领域。下面将对“数与代数”内容进行说明。具体目标1.数与式(1)有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。④理解有理数的运算律,并能运用运算律简化运算。⑤能运用有理数的运算解决简单的问题。⑥能对含有较大数字的信息作出合理的解释和推断。(2)实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的
6、立方根,会用计算器求平方根和立方根。③了解无理数和实数的概念,知道实数与数轴上的点一一对应。④能用有理数估计一个无理数的大致范围。⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。(3)代数式①在现实情境中进一步理解用字母表示数的意义。②能分析简单问题的数量关系,并用代数式表示。③能解释一些简单代数式的实际背景或几何意义。④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。(4)整式与分式①了解整数指数幂
7、的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。③会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算。④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。⑤了解分式的概念,会利用分
此文档下载收益归作者所有