Revisiting Sorting for GPGPU Stream Architectures

Revisiting Sorting for GPGPU Stream Architectures

ID:40091814

大小:1.30 MB

页数:17页

时间:2019-07-20

Revisiting Sorting for GPGPU Stream Architectures_第1页
Revisiting Sorting for GPGPU Stream Architectures_第2页
Revisiting Sorting for GPGPU Stream Architectures_第3页
Revisiting Sorting for GPGPU Stream Architectures_第4页
Revisiting Sorting for GPGPU Stream Architectures_第5页
资源描述:

《Revisiting Sorting for GPGPU Stream Architectures》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RevisitingSortingforGPGPUStreamArchitectures1DuaneMerrill(dgm4d@virginia.edu)AndrewGrimshaw(grimshaw@virginia.edu)AbstractThisreportpresentsefficientstrategiesforsortinglargesequencesoffixed-lengthkeys(andvalues)usingGPGPUstreamprocessors.Ourradixsortingmethodsdemonstratesortingrates

2、of482millionkey-valuepairspersecond,and550millionkeyspersecond(32-bit).Comparedtothestate-of-the-art,ourimplementationsexhibitspeedupofatleast2xforallfully-programmablegenerationsofNVIDIAGPUs,andupto3.7xforcurrentGT200-basedmodels.Forthisdomainofsortingproblems,webelieveoursortingpri

3、mitivetobethefastestavailableforanyfully-programmablemicroarchitecture.Weobtainoursortingperformancebyusingaparallelscanstreamprimitivethathasbeengeneralizedintwoways:(1)withlocalinterfacesforproducer/consumeroperations(visitinglogic),and(2)withinterfacesforperformingmultiplerelated,

4、concurrentprefixscans(multi-scan).Theseabstractionsallowustoimprovetheoverallutilizationofmemoryandcomputationalresourceswhilemaintainingtheflexibilityofareusablecomponent.Werequire38%fewerbytestobemovedthroughtheglobalmemorysubsystemanda64%reductioninthenumberofthread-cyclesneededfo

5、rcomputation.Aspartofthiswork,wedemonstrateamethodforencodingmultiplecompactionproblemsintoasingle,compositeparallelscan.Thistechniqueprovidesourlocalsortingstrategieswitha2.5xspeedupoverbitonicsortingnetworksforsmallprobleminstances,i.e.,sequencesthatcanbeentirelysortedwithintheshar

6、edmemorylocaltoasingleGPUcore.1IntroductionThetransformationofthefixed-functiongraphicsprocessingunitintoafully-programmable,high-bandwidthcoprocessor(GPGPU)hasintroducedawealthofperformanceopportunitiesformanydata-parallelproblems.Asanewanddisruptivegenreofmicroarchitecture,itwillbe

7、importanttoestablishefficientcomputationalprimitivesforthecorrespondingprogrammingmodel.Computationalprimitivespromotesoftwareflexibilityviaabstractionandreuse,andmuchefforthasbeenspentinvestigatingefficientprimitivesforGPGPUstreamarchitectures.Parallelsortinghasbeennoexception:thene

8、edtorankando

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。