Lagrangian dynamics of mechanical

Lagrangian dynamics of mechanical

ID:40082884

大小:232.91 KB

页数:31页

时间:2019-07-20

Lagrangian dynamics of mechanical_第1页
Lagrangian dynamics of mechanical_第2页
Lagrangian dynamics of mechanical_第3页
Lagrangian dynamics of mechanical_第4页
Lagrangian dynamics of mechanical_第5页
资源描述:

《Lagrangian dynamics of mechanical》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter1Lagrangiandynamicsofmechanicalsystems1.1IntroductionThisbookconsidersthemodellingofelectromechanicalsystemsinanunifiedwaybasedonHamilton’sprinciple.ThischapterstartswithareviewoftheLagrangiandynamicsofmechanicalsystems;nextchapterproceedswiththeLagrangiandynamicsofelectricaln

2、etworksandtheremainingchaptersaddressawideclassofelectromechanicalsystems,includingpiezoelectricstructures.TheLagrangiandynamics(oranalyticaldynamics)hasbeenmotivatedbythesub-stitutionofscalarquantities(energyandwork)tovectorquantities(force,momentum,torque,angularmomentum)inclassic

3、alvectordynamics.Generalizedcoordinatesaresubstitutedtophysicalcoordinates,whichallowsaformulationindependentoftheref-erenceframe.Thesystemsareconsideredglobally,ratherthaneverycomponentinde-pendently,withtheadvantageofeliminatingautomaticallytheinteractionforces(con-straints)betwee

4、nthevariouselementarypartsofthesystem.Thechoiceofgeneralizedcoordinatesisnotunique.Thederivationofthevariationalformoftheequationsofdynamicsfromitsvectorcounterpart(Newton’slaws)isdonethroughtheprincipleofvirtualwork,extendedtodynamicsthankstod’Alembert’sprinciple,leadingeventuallyt

5、oHamilton’sprincipleandtheLagrange’sequationsfordiscretesystems.Hamilton’sprincipleisanalternativetoNewton’slawsanditcanbearguedthat,assuch,itisafundamentallawofphysicswhichcannotbederived.Webelieve,however,thatitsformmaynotbeimmediatelycomprehensibletotheunexperiencedreaderandthati

6、tsderivationforasystemofparticleswillhelpitsacceptanceasanalternativeformulationofthedynamicequilibrium.Hamilton’sprincipleisinfactmoregeneralthanNewton’slaws,becauseitcanbegeneralizedtodistributedsystems(governedbypartialdifferentialequations)and,asweshallseelater,toelectromechanica

7、lsystems.Itisalsothestartingpointfortheformulationofmanynumericalmethodsindynamics,includingthefiniteelementmethod.12Mechatronics1.2KineticstatefunctionsConsideraparticletravellinginthedirectionxwithalinearmomentump.AccordingtoNewton’slaw,theforceactingontheparticleequalstherateofcha

8、ngeofthemomentum:dp

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。