Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems

Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems

ID:40070781

大小:149.87 KB

页数:3页

时间:2019-07-19

Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems_第1页
Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems_第2页
Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems_第3页
资源描述:

《Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PhysicaD56(1992)185-187North-HollandFundamentallimitationsforestimatingdimensionsandLyapunovexponentsindynamicalsystemsJ.-P.Eckmann1andD.RuelleLH.E.S.,91440Bures-sur-Yvette,FranceReceived2October1991Revisedmanuscriptreceived3December1991Accepted14January1992CommunicatedbyP.E.RappWeshowth

2、atvaluesofthecorrelationdimensionestimatedoveradecadefromtheGrassberger-Procacciaalgorithmcannotexceedthevalue2log~0NifNisthenumberofpointsinthetimeseries.Whenthisboundissaturateditisthusnotlegitimatetoconcludethatlowdimensionaldynamicsispresent.TheestimationofLyapunovexponentsisalsodisc

3、ussed.Thepurposeofthisnoteistoquestionthedata-wrong(toolow)dimensionswillbeob-validityofanumberofrecentlypublishedesti-tained.AsimilaranalysiswillapplytoestimatesmatesofdimensionsofattractorswhicharebasedofLyapunovexponents.onrathershorttimeseries.ThevaluesobtainedLet(ui)bea(scalar)times

4、erieswithi=arelike6or7,andweshallarguethattheyare1,...,N(thechoiceofsamplingtimeunitwillbeprobablyareflectionofthesmallnumberofdatadiscussedbelow).Usinganembeddingdimensionpointsratherthanofthedimensionofahypo-m,wefirstreconstructatrajectoryinW",withtheticalattractor.Ourconclusionsgoin~h

5、esameXn=(Un,Un+1.....Un+,,--1)"(Thismethod,advo-directionasthoseofGrassberger[1]discussingcatedbyoneofus(DR),wasfirstdocumentedworkofNicolisandNicolis[2],andProcaccia[3]inref.[6].)Then,accordingtotheGrassberger-discussingworkofTsonisandEisner[4].OurProcacciaalgorithm(GP)[7],wecountthe.nu

6、m-analysisishowevermoreprecise,andsomewhatberX(r)ofpairsofpointswithmutualdistancemoreoptimisticthanthatofProcaccia(webe-

7、glogA/'(r)versuslogr,ForsmallboundsofSmith[5].r,theslopeofthisplotisanestimateoftheWhileitisobviousthatashorttimeseriesofcorrelationdimensiond[7].(Forlargerr,thelowprecisionmustleadtospuriousresults,weplotisnotexpectedtobelinear.)Thus,thewishtoarguethat-evenwithgoodprecis

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。