Efficient parallelized particle filter design on CUDA

Efficient parallelized particle filter design on CUDA

ID:40059203

大小:929.44 KB

页数:6页

时间:2019-07-18

Efficient parallelized particle filter design on CUDA_第1页
Efficient parallelized particle filter design on CUDA_第2页
Efficient parallelized particle filter design on CUDA_第3页
Efficient parallelized particle filter design on CUDA_第4页
Efficient parallelized particle filter design on CUDA_第5页
资源描述:

《Efficient parallelized particle filter design on CUDA》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、EFFICIENTPARALLELIZEDPARTICLEFILTERDESIGNONCUDAMin-AnChao,Chun-YuanChu,Chih-HaoChao,andAn-Yeu(Andy)WuGraduateInstituteofElectronicsEngineering,NationalTaiwanUniversityTaipeiCity10617,TaiwanABSTRACTThefirstparallelizationdesignofparticlefiltersonthetradi-tionalGPUispresentedin[

2、10].However,theissueofdataParticlefilteringiswidelyusedinnumerousnonlinearappli-localityismorecrucialinCUDAthantraditionalGPUsduecationswhichrequirereconfigurability,fastprototyping,andtotheexecutionmodelandmemoryhierarchy,whichisnotonlineparallelsignalprocessing.Theemergingco

3、mputingaddressedin[10].Therefore,furtheroptimizationforsuchplatform,CUDA,mayberegardedasthemostappealingplat-architectureisyetanunsolvedandchallengingproblem.formforsuchimplementation.However,therearenotyetInthispaper,weproposetwodesigntechniques,A)finite-literaturesexploring

4、howtoutilizeCUDAforparticlefilters.redrawimportance-maximizing(FRIM)prioreditingandThispareraimstoprovidetwodesigntechniques,A)finite-B)localizedresampling.Sincetheglobaloperationsofredrawimportance-maximizing(FRIM)prioreditingandB)particlefilters,whichdominatetheexecutiontime,

5、arepro-localizedresampling,forefficientimplementationofparticleportionaltothenumberofparticles(N),theFRIMpriorfiltersonCUDA,whichcanbeverifiedtoreduceglobaloper-editingaimstoreducethetotalparticlenumberwithaddi-ationsandprovidesignificantspeedup.Themodificationsontionalcalculatio

6、nateachlocalthread.Moreover,theFRIMalgorithmandarchitecturalmappingareevaluatedwithcon-prioreditingcanalsoimprovethequalityofdrawnparticles,ceptualandquantitativeanalysis.Fromtheclassicbearings-i.e.,increasetheeffectiveparticlenumber(Neff).Thisonlytrackingexperiments,theprop

7、oseddesignis5.73timesmakesresamplingavailabletobedonelocallywithtoler-fasterthanthedirectimplementationonGeForce9400m.ableperformancedegradation,whichsignificantlyreducesIndexTerms—Particlefilter,GPGPU,CUDAtime-consumingglobaloperations.Therestofthispaperisorganizedasfollows.S

8、ection2givesthebackgroundofparticlefilteringandthecharacteris-1.INTRODUCTION

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。