75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares

75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares

ID:40022560

大小:950.05 KB

页数:27页

时间:2019-07-17

75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares_第1页
75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares_第2页
75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares_第3页
75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares_第4页
75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares_第5页
资源描述:

《75633 Structured Total Maximum Likelihood An Alternative to Structured Total Least-Squares》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SIAMJ.MATRIXANAL.APPL.c2010SocietyforIndustrialandAppliedMathematicsVol.31,No.5,pp.2623–2649STRUCTUREDTOTALMAXIMUMLIKELIHOOD:ANALTERNATIVETOSTRUCTUREDTOTALLEASTSQUARES∗AMIRBECK†ANDYONINAC.ELDAR‡Abstract.Linearinverseproblemswithuncertainmeasurementma

2、tricesappearinmanydiffer-entapplications.Oneofthestandardtechniquesforsolvingsuchproblemsisthetotalleastsquares(TLS)method.Recently,analternativeapproachhasbeensuggested,basedonmaximizinganap-propriatelikelihoodfunctionassumingthatthemeasurementmatrixc

3、onsistsofrandomGaussianvariables.Werefertothistechniqueasthetotalmaximumlikelihood(TML)method.Hereweextendthisstrategytothecaseinwhichthemeasurementmatrixisstructuredsothattheperturbationsarenotarbitrarybutratherfollowafixedpattern.Theresultingestimate

4、isreferredtoasthestructuredTML(STML).Asweshow,theSTMLcanbeviewedasaregularizedversionofthestructuredTLS(STLS)approachinwhichtheregularizationconsistsofalogarithmicpenalty.IncontrasttotheSTLSsolution,theSTMLalwaysexists.Furthermore,itsperformanceinprac

5、ticetendstobesuperiortothatoftheSTLSandcompetitivetootherregularizedsolvers,asweillustrateviaseveralexamples.WealsoconsiderafewinterestingspecialcasesinwhichtheSTMLcanbecomputedefficientlyeitherbyreducingitintoaone-dimensionalproblemregardlessoftheprobl

6、emsizeorbyadecompositionviaadiscreteFouriertransform.Keywords.totalleastsquares,maximumlikelihood,nonconvexprogramming,linearinverseproblem,circulantstructuresAMSsubjectclassifications.90C26,90C06,65F22,62J99DOI.10.1137/0907563381.Introduction.Thetotal

7、leastsquares(TLS)method,introducedfirstbyGolubandvanLoanin[23],isapopularapproachtodealwithapproximatelinearsystemsAx≈binwhichboththemodelmatrixAandtheright-handsidevectorbaresubjecttouncertainties[23,24,40].OneoftheappealingfeaturesoftheTLSalgorithmis

8、thatitcoincideswiththemaximumlikelihood(ML)solutionwhenAandbareknownuptoanadditiveGaussiandistortion.ThederivationofTLSasanMLestimateassumesthatnoisymeasurementsofAandbaregivenandjointlyestimatesxandA.Despiteitspopularity,inpractice,theperform

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。