1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition

1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition

ID:40021412

大小:1.45 MB

页数:13页

时间:2019-07-17

1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition_第1页
1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition_第2页
1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition_第3页
1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition_第4页
1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition_第5页
资源描述:

《1999-IEEE-trans-An HMM-based threshold model approach for gesture recognition》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.21,NO.10,OCTOBER1999961AnHMM-BasedThresholdModelApproachforGestureRecognitionHyeon-KyuLeeandJinH.KimAbstractÐThetaskofautomaticgesturerecognitionishighlychallengingduetothepresenceofunpredictableandambiguousnongesturehandmotions.Inth

2、ispaper,anewmethodisdevelopedusingtheHiddenMarkovModelbasedtechnique.Tohandlenongesturepatterns,weintroducetheconceptofathresholdmodelthatcalculatesthelikelihoodthresholdofaninputpatternandprovidesaconfirmationmechanismfortheprovisionallymatchedgesturepatterns.Thethresholdmodelisaweakmodelfor

3、alltrainedgesturesinthesensethatitslikelihoodissmallerthanthatofthededicatedgesturemodelforagivengesture.Consequently,thelikelihoodcanbeusedasanadaptivethresholdforselectingpropergesturemodel.Ithas,however,alargenumberofstatesandneedstobereducedbecausethethresholdmodelisconstructedbycollectin

4、gthestatesofallgesturemodelsinthesystem.Toovercomethisproblem,thestateswithsimilarprobabilitydistributionsaremerged,utilizingtherelativeentropymeasure.Experimentalresultsshowthattheproposedmethodcansuccessfullyextracttrainedgesturesfromcontinuoushandmotionwith93.14percentreliability.IndexTerm

5、sÐHandgesture,gesturespotting,HiddenMarkovModel,segmentation,patternrecognition,relativeentropy,statereduction,thresholdmodel.æ1INTRODUCTIONHUMANgesturesconstituteaspaceofmotionexpressedcomesfromthefactthatthesamegesturevariesdynami-bythebody,face,and/orhands.Amongavarietyofcallyinshapeanddur

6、ation,evenforthesamegesturer.Angestures,thehandgestureisthemostexpressiveandtheidealrecognizerwillextractgesturesegmentsfromthemostfrequentlyusedone[1],[2],[3],[4],[5].Inthispaper,continuousinputsignalandmatchthemwithreferencewedefineagestureasameaningfulpartofthehandmotionpatternsallowingawi

7、derangeofspatio-temporaltocommunicatewithacomputer.Theinteractionusingvariability.handgestureshasbeenstudiedasanalternativeformofRecently,theHMMhasattractedtheattentionofmanyhuman-computerinterfacebyanumberofresearchers,researchersasausefulto

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。