小学六年级下数学《圆柱(例7)》优质课课件

小学六年级下数学《圆柱(例7)》优质课课件

ID:40006444

大小:2.88 MB

页数:14页

时间:2019-07-17

小学六年级下数学《圆柱(例7)》优质课课件_第1页
小学六年级下数学《圆柱(例7)》优质课课件_第2页
小学六年级下数学《圆柱(例7)》优质课课件_第3页
小学六年级下数学《圆柱(例7)》优质课课件_第4页
小学六年级下数学《圆柱(例7)》优质课课件_第5页
资源描述:

《小学六年级下数学《圆柱(例7)》优质课课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、问题解决(例7)圆柱与圆锥这个瓶子不是一个完整的圆柱,无法直接计算容积。一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?一、探索新知请你认真阅读,理解一下这道题说的是什么意思?请你仔细想一想,怎么能计算出瓶子的容积呢?能不能转化成圆柱呢?18cm7cm一、探索新知一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?18cm7cm让我们一起来分析解答这道题吧。瓶子里水的体积倒置后,体积没变。水的体积加上18cm高圆柱的体积就是瓶子

2、的容积。也就是把瓶子的容积转化成两个圆柱的体积。答:这个瓶子的容积是1256mL。瓶子的容积:=3.14×(8÷2)×7+3.14×(8÷2)×18=3.14×16×(7+18)=3.14×16×25=1256(cm³)=1256(mL)22一、探索新知一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?18cm7cm一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?18cm7cm让我们回顾反思一下吧!我们利用了体积不变的特性,把

3、不规则图形转化成规则图形来计算。在五年级计算梨的体积也是用了转化的方法。一、探索新知请你仔细想一想,小明喝了的水的体积该怎么计算呢?无水部分高为10cm圆柱的体积就是小明喝了的水的体积。一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后倒置放平,无水部分高10cm,内径是6cm。小明喝了多少水?(一)做一做答:小明喝了282.6mL的水。3.14×(6÷2)×10=3.14×9×10=28.26×10=282.6(cm³)=282.6(mL)210cm二、知识应用1.学校要在教学区和操场之间修一道围墙,原计划用土石35m³。后来多开了一个厚度为25cm的月亮门,减少了土石的用

4、量。现在用了多少立方米的土石?答:现在用了34.215立方米的土石。二、知识应用(二)解决问题请你仔细想一想,要想知道现在用多少立方米的土石?就要先求什么?35-3.14×(2÷2)×0.25=35-3.14×1×0.25=35-0.785=34.215(m³)22.两个底面积相等的圆柱,一个高为4.5dm,体积是81dm。另一个高为3dm,它的体积是多少?81÷4.5×3=18×3=54(dm³)答:它的体积是54dm³。二、知识应用通过知道圆柱的高和体积可以求出什么?3.一个圆柱形玻璃容器的底面直径是10cm,把一块完全浸泡在这个容器的水中的铁块取出后,水面下降2c

5、m。这块铁块的体积是多少?3.14×(10÷2)×2=3.14×5²×2=3.14×25×2=78.5×2=157(cm³)2答:这块铁皮的体积是157cm³。二、知识应用请你想一想,如何求这块铁块的体积?请你想一想,以长为轴旋转,得到的圆柱是什么样子?请你想一想,以宽为轴旋转,得到的圆柱又是什么样子?4.右面这个长方形的长是20cm,宽是10cm。分别以长和宽为轴旋转一周,得到两个圆柱体。它们的体积各是多少?3.14×10²×20=3.14×100×20=314×20=6280(cm³)答:以长为轴旋转一周,得到的圆柱的体积是6280cm³。3.14×20²×10=3

6、.14×400×10=1256×10=12560(cm³)答:以宽为轴旋转一周,得到的圆柱的体积是12560cm³。二、知识应用20cm10cm5.下面4个图形的面积都是36dm2(图中单位:dm)。用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最大?你有什么发现?图1图2图3图4设π=3图1半径:18÷3÷2=3(dm)图2半径:12÷3÷2=2(dm)图3半径:9÷3÷2=1.5(dm)图4半径:6÷3÷2=1(dm)体积:3×3²×2=54(dm³)体积:3×2²×3=36(dm³)体积:3×1.5²×4=27(dm³)体积:3×1²×6=18(dm³

7、)答:图4圆柱的体积最小,图1圆柱的体积最大。1812962346二、知识应用我发现,上面4个图形。当以长作为圆柱底面周长时,长方形的长和宽的长度越接近,所卷成的圆柱的体积越小。请你想一想,上面4个图形当以长为圆柱底面周长时,会卷成什么样的圆柱?请你动手试一试。图1图2图3图41812962346我发现,上面4个图形。当以宽作为圆柱底面周长时,长方形的长和宽的长度越接近,所卷成的圆柱的体积越大。请你想一想,上面4个图形当以宽为圆柱底面周长时,会卷成什么样的圆柱?请你动手试一试。图1半径:2÷3÷2≈0.3(dm)图2半径:3÷3÷2=0.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。