(2011)Online Variational Inference for the Hierarchical Dirichlet Process

(2011)Online Variational Inference for the Hierarchical Dirichlet Process

ID:39994634

大小:441.06 KB

页数:9页

时间:2019-07-16

(2011)Online Variational Inference for the Hierarchical Dirichlet Process_第1页
(2011)Online Variational Inference for the Hierarchical Dirichlet Process_第2页
(2011)Online Variational Inference for the Hierarchical Dirichlet Process_第3页
(2011)Online Variational Inference for the Hierarchical Dirichlet Process_第4页
(2011)Online Variational Inference for the Hierarchical Dirichlet Process_第5页
资源描述:

《(2011)Online Variational Inference for the Hierarchical Dirichlet Process》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、OnlineVariationalInferencefortheHierarchicalDirichletProcessChongWangJohnPaisleyDavidM.BleiComputerScienceDepartment,PrincetonUniversityfchongw,jpaisley,bleig@cs.princeton.eduAbstractlikeclassification,exploration,andsummarization.Unlikeitsfinitecounterpart,latentDirichletallocation[2],theHDPtopicmod

2、elinfersthenumberoftopicsfromthedata.ThehierarchicalDirichletprocess(HDP)isaBayesiannonparametricmodelthatcanbeusedPosteriorinferencefortheHDPisintractable,andmuchtomodelmixed-membershipdatawithapoten-researchisdedicatedtodevelopingapproximateinferencetiallyinfinitenumberofcomponents.Ithasbeenalgori

3、thms[1,3,4].Thesemethodsarelimitedformassiveappliedwidelyinprobabilistictopicmodeling,scaleapplications,however,becausetheyrequiremultiplewherethedataaredocumentsandthecompo-passesthroughthedataandarenoteasilyapplicabletonentsaredistributionsoftermsthatreflectrecur-streamingdata.1Inthispaper,wedevel

4、opanewapprox-ringpatterns(or“topics”)inthecollection.GivenimateinferencealgorithmfortheHDP.Ouralgorithmisadocumentcollection,posteriorinferenceisuseddesignedtoanalyzemuchlargerdatasetsthantheexistingtodeterminethenumberoftopicsneededandtostate-of-the-artallowsand,further,canbeusedtoanalyzecharacter

5、izetheirdistributions.Onelimitationstreamsofdata.ThisisparticularlyapttotheHDPtopicofHDPanalysisisthatexistingposteriorinfer-model.Topicmodelspromisetohelpsummarizeandorga-encealgorithmsrequiremultiplepassesthroughnizelargearchivesoftextsthatcannotbeeasilyanalyzedallthedata—thesealgorithmsareintrac

6、tableforbyhandand,further,couldbebetterexploitedifavailableverylargescaleapplications.Weproposeanon-onstreamsoftextssuchaswebAPIsornewsfeeds.linevariationalinferencealgorithmfortheHDP,Ourmethod—onlinevariationalBayesfortheHDP—wasanalgorithmthatiseasilyapplicabletomassiveinspiredbytherecentonlinevar

7、iationalBayesalgorithmandstreamingdata.OuralgorithmissignificantlyforLDA[7].OnlineLDAallowsLDAmodelstobefittofasterthantraditionalinferencealgorithmsforthemassiveandstreamingdata,andenjoyssignificantimprove-HD

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。