资源描述:
《常见_“恒成立问题”_的解决办法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、常见“恒成立问题”的解决办法在数学问题研究中经常碰到在给定条件下某些结论恒成立问题.这类问题涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点.下面本人就高考中常出现的恒成立问题谈一谈自己的解法.一变量分离法变量分离法主要通过两个基本思想解决“恒成立问题”思路1、思路2、例1.已知函数f(x)=2x-若不等式2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围解:本题可通过变量分离来解
2、决.当时,即,,,故的取值范围是例2.设,其中a为实数,n为任意给定的自然数,且,如果当时有意义,求a的取值范围.解:本题即为对于,有恒成立.这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a的范围,可先将a分离出来,得,对于恒成立.构造函数,则问题转化为求函数在上的值域,由于函数在上是单调增函数,则在上为单调增函数.于是有的最大值为,从而可得.如何在区间D上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导
3、等等方法求函数f(x)的最值.二赋值法——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例3.由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4定义映射f:(a1,a2,a3,a4)→b1+b2+b3+b4,则f:(4,3,2,1)→()A.10B.7C.-1D.0略解:取x=0,则a4=1+b1+b2+b3+b4,又a4=1,所以b1+b2+b3+b4=0,故选D例4.如果函数y=f(x)=sin2x+acos2x的图象关于直线x=对称,那
4、么a=().A.1B.-1C.D.-.略解:取x=0及x=,则f(0)=f(),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.三构造函数法1、一次函数型若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷.给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于同理,若在[m,n]内恒有f(x)<0,则有例5.对于满足
5、a
6、2的所有实数a,求使不等式x2+ax+1>2a+x恒成立的x的取值范围.分析:在不等式中出现了两个字母:x及a,关键在于
7、该把哪个字母看成是一个变量,另一个作为常数.显然可将a视作自变量,则上述问题即可转化为在[-2,2]内关于a的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+1>0在
8、a
9、2时恒成立,设f(a)=(x-1)a+x2-2x+1,则f(a)在[-2,2]上恒大于0,故有:即解得:∴x<-1或x>3.即x∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.2、二次函数型若二次函数y=ax2+bx+c(a≠0)大于0恒成立,则有;若是二次函数在指
10、定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解.例6.若函数的定义域为R,求实数的取值范围.分析:该题就转化为被开方数在R上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当恒成立,所以①当此时②当有综上所述,f(x)的定义域为R时,例7.已知函数,若时,恒成立,求的取值范围.分析:要使时,恒成立,只需的最小值即可.解:,令在上的最小值为.⑴当,即时,又不存在.⑵当,即时,又⑶当,即时,又综上所述,.对于二次函数在R上恒成立问题往往采用判别式法(如例6),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题(如例7
11、).四数形结合法若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果.例8.设,若不等式恒成立,求a的取值范围.解:若设,则为上半圆.设,为过原点,a为斜率的直线.在同一坐标系内作出函数图象,依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.五换元引参法例9.对于所有实数x,不等式恒成立,求a的取值范围.解:因为的值随着参数a的变化而变化,若设
12、,则上述问题实质是“当t为何值时,不等式恒成立”.这是我们较为熟悉的二次函数问题,它等价于求解关于t的不等式