资源描述:
《Normal distribution》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Normaldistribution/GaussiandistributionSumarizeProbabilitydensityfunctionTheredcurveisthestandardnormaldistributionCumulativedistributionfunctionNotationμ∈R—meanParameters2σ>0—varianceSupport(定义域)x∈R(-∞,+∞)pdf(概率密度函数)CDF(累计分布函数)MeanμMedianμMode(众数)μVarianceSkewness(偏度)01Kurtosis(峰度)3Standar
2、dnormaldistributionIfμ=0andσ=1,thedistributioniscalledthestandardnormaldistributionortheunitnormaldistribution,andarandomvariablewiththatdistributionisastandardnormaldeviate.21关于偏度为0和峰度为3的原因见下文Moments部分2积分和为1的证明:先令I=∫f(x)dx,再将一重积分转换为二重积分,再通过极坐标变换得出Properties·IfX~N(μ,),foranyrealnumbersaandb
3、,then:aX+b~N(aμ+b,2a).·IfX~N(μX,X)andY~N(μY,Y)aretwoindependentnormalrandomvariables,then:3U=X+Y~N(μX+μY,X+Y).4V=X-Y~N(μX-μY,X+Y).·IfXandYarejointlynormalanduncorrelated,thentheyare5independent.MomentsIfX(meanis0)hasanormaldistribution,thesemomentsexistandarefiniteforanypwhoserealpartisgrea
4、terthan−1.Foranynon-negativeintegerp,theplaincentralmomentsare6Heren!!denotesthedoublefactorial,thatistheproductofeveryoddnumberfromnto1.3可由定义及卷积公式证明,下同4若X与Y的方差相等,则U与V两者相互独立5TherequirementthatXandYshouldbejointlynormalisessential,withoutitthepropertydoesnothold.Fornon-normalrandomvariablesu
5、ncorrelatednessdoesnotimplyindependence.6当p是奇数时,Ex^p=∫x^p*f(x)dx,奇函数乘以偶函数得奇函数,奇函数在R上的定积分为0Thecentralabsolutemomentscoincidewithplainmomentsforallevenorders,butarenonzeroforoddorders.Foranynon-negativeintegerp,OrderNon-centralmomentCentralmoment1μ02222μ+σσ323μ+3μσ0422444μ+6μσ+3σ3σ53245μ+10μσ
6、+15μσ064224666μ+15μσ+45μσ+15σ15σ7523467μ+21μσ+105μσ+105μσ08624426888μ+28μσ+210μσ+420μσ+105σ105σCombinationoftwoormoreindependentrandomvariablesIfX1andX2aretwoindependentstandardnormalrandomvariableswithmean0andvariance1,thentheirsumanddifferenceisdistributednormallywithmeanzeroandvariancet
7、wo:X1±X2∼N(0,2).IfX1,X2,…,Xnareindependentstandardnormalrandomvariables,thenthesumoftheirsquareshasthechi-squareddistributionwithndegreesoffreedom.IfX1,X2,…,Xnareindependentnormallydistributed2randomvariableswithmeansμandvariancesσ,thentheirsamplemeani