变量与函数(1)

变量与函数(1)

ID:39921023

大小:159.50 KB

页数:10页

时间:2019-07-15

变量与函数(1)_第1页
变量与函数(1)_第2页
变量与函数(1)_第3页
变量与函数(1)_第4页
变量与函数(1)_第5页
资源描述:

《变量与函数(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、变量与函数第一课时如图是某地一天内的气温变化图看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?··银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解:随着存期x的增长,相应的年利率y也随着增长.收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回

2、答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大,频率f就________.解:(1)l与f的乘积是一个定值,即lf=300000,或者说(2)波长l越大,频率f就越小 .在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,

3、例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量(independentvariable),y是因变量(dependentvariable),此时也称y是x的函数(function).表示函数关系的方法通常有三种:(1)解析法如问题3中的,这些表达式称为函数的关系式.(2)列表法如问题2中的利率表,问题3中的波长与频率关系表.(3)图象法如问题1中的气温曲线.问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),如问题3中的300000例:写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以

4、60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和S与边数n的关系式.解:(1)C=2πr,2π是常量,r、C是变量;(2)s=60t,60是常量,t、s是变量;(3)S=(n-2)×180,2、180是常量,n、S是变量.交流反思:1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系.2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量.3.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图象法检测反馈1.举3个日

5、常生活中遇到的函数关系的例子.2.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是;(2)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α;(3)若某种报纸的单价为a元,x表示购买这种报纸的份数,则购买报纸的总价y(元)与x间的关系是:y=ax.再见制作:渠县双土中心学校孙建

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。