A Lecture on Quantum Logic Gates

A Lecture on Quantum Logic Gates

ID:39909063

大小:87.84 KB

页数:11页

时间:2019-07-14

A Lecture on Quantum Logic Gates_第1页
A Lecture on Quantum Logic Gates_第2页
A Lecture on Quantum Logic Gates_第3页
A Lecture on Quantum Logic Gates_第4页
A Lecture on Quantum Logic Gates_第5页
资源描述:

《A Lecture on Quantum Logic Gates》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ALectureonQuantumLogicGatesKazuyukiFUJII∗DepartmentofMathematicalSciencesYokohamaCityUniversityYokohama,236-0027JapanAbstractInthisnotewemakeashortreviewofconstructionsofn-repeatedcontrolledunitarygatesinquantumlogicgates.arXiv:quant-ph/0101054v113Jan2001∗E-mailaddress:fujii@math.yokoh

2、ama-cu.ac.jp01IntroductionThisisoneofmylectuersentitled“IntroductiontoQuantumComputation”givenatGraduateSchoolofYokohamaCityUniversity.Thecontentsoflecturearebasedonthebook[1]andreviewpapers[2],[3].ThecontrolledNOTgate(moregenerally,controlledunitarygates)playsveryimportantroleinquantu

3、mlogicgatestoproveauniversality.Theconstructionsofcontrolledunitarygatesorcontrolled-controlledunitarygatesareclearandeasytounderstand.Buttheconstructionofgeneralcontrolledunitarygates(n-repeatedcontrolledunitarygates)seem,inmyteachingexperience,noteasytounderstandforyounggraduatestude

4、nts.Ithoughtoutsomemethodtomaketheproofmoreaccessibletothem.Iwillintroduceitinthisnote.Maybeitis,moreorless,well-knowninsomefieldinPureMathematics,butwearetoobusytostudysuchafieldleisurely.Ibelievethatthisnotewillmakenon-expertsmoreaccessibletoquantumlogicgates.2SomeIdentityonZ2Letusstar

5、twiththemod2operationinZ2:forx,y∈Z2x⊕y=x+y(mod2).(1)Fromtherelations0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,itiseasytoseex⊕y=x+y−2xy,orx+y−x⊕y=2xy.(2)Wenotethatx⊕0=x,x⊕1=1−x,x⊕x=2x−2x2=2x(1−x)=0.Fromx+y−x⊕y=2xywehavex+y+z−(x⊕y+x⊕z+y⊕z)+x⊕y⊕z=4xyz(3)1forx,y,z∈Z2.Theproofiseasy,soweleaveittothereaders.M

6、oreoverwehavex+y+z+w−(x⊕y+x⊕z+x⊕w+y⊕z+y⊕w+z⊕w)+(x⊕y⊕z+x⊕y⊕w+x⊕z⊕w+y⊕z⊕w)−x⊕y⊕z⊕w=8xyzw(4)forx,y,z,w∈Z2.Butisthisproofsoeasy?NowwedefineafunctionXnXnXnFn(x1,···,xn)=xi−xi⊕xj+xi⊕xj⊕xk−···i=1i

7、(x1,x2)=2x1x2andF3(x1,x2,x3)=4x1x2x3andF4(x1,x2,x3,x4)=8x1x2x3x4.FromtheserelationsitiseasytoconjecturePropositionAn−1Fn(x1,x2,···,xn)=2x1x2···xn.(6)Thisiswell-known[4],butIdon’tknowtheusualproof(in[4]thereisnoproof).Thisproofmaybenoteasyfornon-expertsagainsttheclaiminthebook[1],seep

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。