Statistical Consistency of Top-k Ranking

Statistical Consistency of Top-k Ranking

ID:39904951

大小:110.25 KB

页数:9页

时间:2019-07-14

Statistical Consistency of Top-k Ranking_第1页
Statistical Consistency of Top-k Ranking_第2页
Statistical Consistency of Top-k Ranking_第3页
Statistical Consistency of Top-k Ranking_第4页
Statistical Consistency of Top-k Ranking_第5页
资源描述:

《Statistical Consistency of Top-k Ranking》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、StatisticalConsistencyofTop-kRankingFenXiaTie-YanLiuHangLiInstituteofAutomationMicrosoftResearchAsiaMicrosoftResearchAsiaChineseAcademyofSciencestyliu@microsoft.comhanglig@microsoft.comfen.xia@ia.ac.cnAbstractThispaperisconcernedwiththeconsistencyanalysison

2、listwiserankingmeth-ods.Amongvariousrankingmethods,thelistwisemethodshavecompetitiveper-formancesonbenchmarkdatasetsandareregardedasoneofthestate-of-the-artapproaches.Mostlistwiserankingmethodsmanagetooptimizerankingonthewholelist(permutation)ofobjects,howe

3、ver,inpracticalapplicationssuchasin-formationretrieval,correctrankingatthetopkpositionsismuchmoreimportant.Thispaperaimstoanalyzewhetherexistinglistwiserankingmethodsarestatisti-callyconsistentinthetop-ksetting.Forthispurpose,wedefineatop-krankingframework,w

4、herethetrueloss(andthustherisks)aredefinedonthebasisoftop-ksubgroupofpermutations.Thisframeworkcanincludethepermutation-levelrankingframeworkproposedinpreviousworkasaspecialcase.Basedonthenewframework,wederivesufficientconditionsforalistwiserankingmethodtobec

5、onsistentwiththetop-ktrueloss,andshowaneffectivewayofmodify-ingthesurrogatelossfunctionsinexistingmethodstosatisfytheseconditions.Experimentalresultsshowthatafterthemodifications,themethodscanworksig-nificantlybetterthantheiroriginalversions.1IntroductionRank

6、ingisthecentralprobleminmanyapplicationsincludinginformationretrieval(IR).Inrecentyears,machinelearningtechnologieshavebeensuccessfullyappliedtoranking,andmanylearningtorankmethodshavebeenproposed,includingthepointwise[12][9][6],pairwise[8][7][2],andlistwis

7、emethods[13][3][16].Empiricalresultsonbenchmarkdatasetshavedemonstratedthatthelistwiserankingmethodshaveverycompetitiverankingperformances[10].Toexplainthehighrankingperformancesofthelistwiserankingmethods,atheoreticalframeworkwasproposedin[16].Intheframewo

8、rk,existinglistwiserankingmethodsareinterpretedasmakinguseofdifferentsurrogatelossfunctionsofthepermutation-level0-1loss.Theoreticalanalysisshowsthatthesesurrogatelossfunctionsareallstatisticallyconsis

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。