Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1

Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1

ID:39839870

大小:175.18 KB

页数:12页

时间:2019-07-12

Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1_第1页
Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1_第2页
Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1_第3页
Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1_第4页
Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1_第5页
资源描述:

《Heisenberg’s uncertainty relation Violation and reformulation1402.5601v1》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Heisenberg’suncertaintyrelation:ViolationandreformulationMasanaoOzawaGraduateSchoolofInformationScience,NagoyaUniversity,Chikusa-ku,Nagoya,464-8601,JapanE-mail:ozawa@is.nagoya-u.ac.jpAbstract.TheuncertaintyrelationformulatedbyHeisenbergin1927describesatrad

2、e-offbetweentheerrorofameasurementofoneobservableandthedisturbancecausedonanothercomplementaryobservablesothattheirproductshouldbenolessthanalimitsetbyPlanck’sconstant.In1980,Braginsky,Vorontsov,andThorneclaimedthatthisrelationleadstoasensitivitylimitforgra

3、vitationalwavedetectors.However,in1988amodelofpositionmeasurementwasconstructedthatbreaksboththislimitandHeisenberg’srelation.Here,wediscusstheproblemsastohowwereformulateHeisenberg’srelationtobeuniversallyvalidandhowweexperimentallyquantifytheerrorandthed

4、isturbancetorefutetheoldrelationandtoconfirmthenewrelation.1.Heisenberg’sEDRThediscoveryofquantummechanicsintroducednon-commutativityinalgebraiccalculusofobservables;thecanonicalcommutationrelation(CCR)[Q,P]=i¯h(1)isrequiredtoholdbetweenacoordinateQofaparti

5、cleanditsmomentumP,wherethecommutator[Q,P]isdefinedby[Q,P]=QP−PQ.In1927,Heisenbergproposedanoperationalmeaningofthenon-commutativity:“themorepreciselythepositionisdetermined,thelesspreciselythemomentumisknown,andconversely”[1,p.64].@arXiv:1402.5601v1[quant-

6、ph]23Feb2014Bythefamousγraymicroscopethoughtexperimenthederivedtherelation¯hε(Q)η(P)≥,(2)2whereε(Q)isthe“meanerror”ofapositionmeasurementandη(P)isthetherebycaused“discontinuouschange”inthemomentumP:Letε(Q)betheprecisionwithwhichthevalueQisknown(ε(Q)is,say,

7、themeanerrorofQ),thereforeherethewavelengthofthelight.Letη(P)betheprecisionwithwhichthevaluePisdeterminable;thatis,here,thediscontinuouschangeofPintheComptoneffect[1,p.64].Here,“meanerror”isnaturallyunderstoodtobe“root-mean-square(rms)error”asintroducedbyGa

8、uss[2],and“discontinuouschange”isoftencalled“meandisturbance.”HeisenbergclaimedthatEq.(2)isa“straightforwardmathematicalconsequence”ofEq.(1)[1,p.65]andgaveitsmathematicaljustification[1,p.69].2.Heisenberg’sder

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。